Fundamentos de Transporte e Cálculo de Dose em Tratamentos com Feixes de Prótons

Hélio Yoriyaz, Hélio Yoriyaz, Isabela Soares Branco, Isabel Pinheiro Almeida, Gabriel Paiva Fonseca

Resumo


Este artigo de revisão apresenta um breve histórico, com os principais fatos da evolução da terapia com feixe de prótons, seguido de uma descrição das principais características dosimétricas apresentadas em faixas de energia utilizadas em terapia. É feita uma breve comparação entre a protonterapia e as demais modalidades de radioterapia com feixe de fótons. Também estão descritos alguns códigos de Monte Carlo atualmente utilizados na simulação do transporte de prótons no meio e suas peculiaridades.


Texto completo:

PDF

Referências


Tobias CA, Lawrence JH, Born JL, McCombs RK, Roberts JE, Anger HO, et al. Pituitary irradiation with high-energy proton beams a preliminary report. Cancer Res. 1958;18(2):121–34.

Larsson B, Leksell L, Rexed B, Sourander P, Mair W, Andersson B. The high-energy proton beam as a neurosurgical tool. Nature. 1958;182(4644):1222.

Kjellberg RN, Sweet WH, Preston WM, Koehler AM. The Bragg peak of a proton beam in intracranial therapy of tumors. Trans Am Neurol Assoc. 1962;87.

Smith AR. Proton therapy. Phys Med Biol. 2006;51(13):R491.

The Particle Therapy Co-Operative Group - PTCOG. Particle Therapy Patient Statistics [Internet]. [acessado em 29/01/2019]. Disponível em: https://www.ptcog.ch/index.php/ptcog-patient-statistics

The Particle Therapy Co-Operative Group - PTCOG. Particle therapy facilities in operation (last update: February 2019) [Internet]. 2019 [acessado em 14/02/2019]. Disponível em: https://www.ptcog.ch/index.php/facilities-in-operation

Kaviarasu K, Raj NAN, Hamid M, Babu AAG, Sreenivas L, Murthy KK. Verification of dosimetric commissioning accuracy of intensity modulated radiation therapy and volumetric modulated arc therapy delivery using task Group-119 guidelines. J Med Phys. 2017;42(4):258.

Hussein M, Heijmen BJM, Verellen D, Nisbet A. Automation in intensity-modulated radiotherapy treatment planning-a review of recent innovations. Br J Radiol. 2018;20180270.

Cozzolino M, Oliviero C, D’Andrea B, Guglielmi G, Califano G, Caivano R, et al. The Role of Adjuvant Radiotherapy for a Case of Primary Breast Sarcoma: A Plan Comparison between Three Modern Techniques and a Review of the Literature. Case Rep Med. 2018;2018.

Tamaki T, Hirai R, Igari M, Kumazaki Y, Noda S, Suzuki Y, et al. Dosimetric comparison of three-dimensional conformal radiotherapy versus volumetric-arc radiotherapy in cervical cancer treatment: applying the central-shielding principle to modern technology. J Radiat Res. 2018;

Miralbell R, Lomax A, Cella L, Schneider U. Potential reduction of the incidence of radiation-induced second cancers by using proton beams in the treatment of pediatric tumors. Int J Radiat Oncol Biol Phys. 2002;54(3):824–9.

Zhang R, Howell RM, Taddei PJ, Giebeler A, Mahajan A, Newhauser WD. A comparative study on the risks of radiogenic second cancers and cardiac mortality in a set of pediatric medulloblastoma patients treated with photon or proton craniospinal irradiation. Radiother Oncol. 2014;113(1):84–8.

Newhauser WD, Fontenot JD, Mahajan A, Kornguth D, Stovall M, Zheng Y, et al. The risk of developing a second cancer after receiving craniospinal proton irradiation. Phys Med Biol. 2009;54(8):2277.

Paganetti H. Range uncertainties in proton therapy and the role of Monte Carlo simulations. Phys Med Biol. 2012;57(11):R99.

Paganetti H. Proton Beam Therapy. Physics World Discovery - IOP Publishing Ltd; 2017. 33 p.

Landry G, Seco J, Gaudreault M, Verhaegen F. Deriving effective atomic numbers from DECT based on a parameterization of the ratio of high and low linear attenuation coefficients. Phys Med Biol. 2013;58(19):6851.

Hünemohr N, Paganetti H, Greilich S, Jäkel O, Seco J. Tissue decomposition from dual energy CT data for MC based dose calculation in particle therapy. Med Phys. 2014;41(6Part1):61714.

Landry G, Reniers B, Pignol J-P, Beaulieu L, Verhaegen F. The difference of scoring dose to water or tissues in Monte Carlo dose calculations for low energy brachytherapy photon sources. Med Phys. 2011;38(3):1526–33.

Bazalova M, Carrier J-F, Beaulieu L, Verhaegen F. Dual-energy CT-based material extraction for tissue segmentation in Monte Carlo dose calculations. Phys Med Biol. 2008;53(9):2439.

ICRU Report 78: Prescribing, Recording, and Reporting Proton-Beam Therapy.

Lee C-C, Lee Y-J, Chen S-K, Chiang B-H, Tung C-J, Chao T-C. MCNPX simulation of proton dose distributions in a water phantom. Biomed J. 2015;38(5).

Hünemohr N, Krauss B, Tremmel C, et al. Experimental verification of ion stopping power prediction from dual energy CT data in tissue surrogates. Phys. Med. Biol. 2014;59:83–96.

Hudobivnik N, Schwarz F, Johnson T, et al. Comparison of proton therapy treatment planning for head tumors with a pencil beam algorithm on dual and single energy CT images. Med. Phys. 2016;43:495–50)

Ardenfors O, Dasu A, Kopeć M, Gudowska I. Modelling of a proton spot scanning system using MCNP6. In: Journal of Physics: Conference Series. IOP Publishing; 2017. p. 12025.

Zieb K, Hughes HG, James MR, Xu XG. Review of heavy charged particle transport in MCNP6. 2. Nucl Instruments Methods Phys Res Sect A Accel Spectrometers, Detect Assoc Equip. 2018;886:77–87.

Testa M, Schumann J, Lu H-M, Shin J, Faddegon B, Perl J, et al. Experimental validation of the TOPAS Monte Carlo system for passive scattering proton therapy. Med Phys. 2013;40(12).

Agostinelli S, Allison J, Amako K al, Apostolakis J, Araujo H, Arce P, et al. GEANT4—a simulation toolkit. Nucl instruments methods Phys Res Sect A Accel Spectrometers, Detect Assoc Equip. 2003;506(3):250–303.

Kimstrand P, Tilly N, Ahnesj A, Traneus E. Experimental test of Monte Carlo proton transport at grazing incidence in GEANT4, FLUKA and MCNPX. Phys Med Biol. 2008;53(4):1115.

Doolan PJ, Testa M, Sharp G, Bentefour EH, Royle G, Lu HM. Patient-specific stopping power calibration for proton therapy planning based on single-detector proton radiography. Phys Med Biol. 2015;60(5):1901.

Langner UW, Eley JG, Dong L, Langen K. Comparison of multi‐institutional Varian ProBeam pencil beam scanning proton beam commissioning data. J Appl Clin Med Phys. 2017;18(3):96–107.

Lin Y, Clasie B, Lu H-M, Flanz J, Shen T, Jee K-W. Impacts of gantry angle dependent scanning beam properties on proton PBS treatment. Phys Med Biol. 2016;62(2):344.

Sahoo N, Poenisch F, Zhang X, Li Y, Lii M, Li H, et al. 3D treatment planning system—Varian Eclipse for proton therapy planning. Med Dosim. 2018;43(2):184–94.




DOI: http://dx.doi.org/10.29384/rbfm.2019.v13.n1.p109-115

Apontamentos

  • Não há apontamentos.


Direitos autorais 2019 Revista Brasileira de Física Médica



Revista Brasileira de Física Médica - RBFM

ISSN: 1984-9001

Este obra está licenciada com uma Licença Creative Commons Atribuição-NãoComercial-SemDerivações 4.0 Internacional.

Desenvolvido por:

Logomarca da Lepidus Tecnologia