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Resumo 
A validação de muitos métodos de otimização de dose de radiação em imagens de raio X necessita de uma grande 
quantidade de imagens clínicas com diferentes relações de sinal-ruído. Esses dados são normalmente gerados através de 
simulações computacionais. Para alcançar esse objetivo, nosso grupo desenvolveu um método de simulação de redução 
de dose para tomossíntese digital mamária. Neste trabalho apresentado anteriormente, os testes foram feitos em um 
equipamento com detector de amorfo selênio, com correlação mínima entre os pixels. Neste trabalho proposto, busca-se 
avaliar o desempenho da simulação em sistemas de amorfo-silício. As características do sinal e do ruído nas imagens reais 
e simuladas foram medidas através da relação sinal ruído (SNR) e do espetro de potência do ruído (NNPS). Para medir a 
performance do método, o erro relativo médio entre as imagens reais e simuladas foi estimado. Os resultados apontam um 
erro menor que 2,5% entre as imagens simuladas e reais em termos de SNR. A influência da correlação do ruído 
considerado no método foi verificada através do NNPS. Os testes apontaram um erro de até 55% entre as imagens reais 
e simuladas, em termos de NNPS, sem o kernel de correlação enquanto que o erro considerando a correlação foi em torno 
de 5,5%. Portanto, os resultados mostram que a correlação do ruído é um fator importante a ser considerado durante a 
simulação de sistemas amorfo-silício. 
Palavras-chave: Tomossíntese digital mamária; redução da dose de radiação; ruído quântico; correlação do ruído; detector 
de raios X. 
 
Abstract 
The validation of many dose optimization methods in x-ray imaging requires clinical images from a range of signal-to-ratio 
regimes. This data is commonly generated through computer simulation. For this purpose, our group developed a method 
to simulate dose reduction for digital breast tomosynthesis. In the previous work, tests were performed in a system that 
features an amorphous selenium detector with minimal pixel correlation. In the current work, we evaluate the simulation 
performance in an amorphous silicon system, which yields a relevant pixel correlation. Signal and noise characteristics in 
real and simulated images were measured using the signal-to-noise ratio (SNR) and the normalized noise power spectrum 
(NNPS). The simulation method assessment was performed through the average relative error between simulated and real 
images. The SNR results point to an error of less than 2.5% between the images. The noise correlation influence was verified 
through the NNPS. The tests pointed to errors up to 55% between the real and simulated images when the correlation kernel 
is not considered, whereas the error considering the correlation kernel was kept around 5.5%. Therefore, the results show 
that the correlation kernel is a relevant factor to be considered when simulating amorphous silicon systems. 
Keywords: Digital breast tomosynthesis; radiation dose reduction; quantum noise; noise correlation; x-ray detector. 
 
 
1. Introduction 

According to statistics from the National Cancer 
Institute (INCA), approximately 60,000 new breast 
cancer cases will be diagnosed in Brazil in 20191. 
Screening is commonly advised to increase survival 
rates2,3. 

Digital breast tomosynthesis (DBT) is emerging as 
an important imaging tool for breast cancer screening. 
It creates a three-dimensional representation of the 
breast volume from a set of low-dose projections 
acquired within a limited angular range4. This imaging 
modality minimizes tissue overlap inherent to 
conventional mammography5. As DBT relies on the 
acquisition of multiple projections, with approximately 

the same combined radiation dose as stated for 2D 
mammography, the relative noise is higher in each 
projection. A number of works investigated the 
relationship between radiation dose and diagnostic 
performance, showing that noise can negatively 
impact the detection of subtle signs of breast cancer, 
decreasing diagnostic accuracy6-12. 

Studies on the optimization between radiation dose 
and image quality require image data from a range of 
noise levels. However, acquiring patient data at 
different dose levels would require repeated exposure 
of the same subject, and thus representing risks of 
induced cancer13. One common approach to 
overcome this issue is to simulate dose reduction by 
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adding the correct amount of noise to clinical data 
acquired at a standard radiation dose14-18. 

Recently, our group presented a method to 
accurately simulate dose reduction in DBT 
images19.The proposed method was built upon a 
noise model that considers the pixel offset, electronic 
noise, quantum noise, spatially-variant quantum gain 
and noise spatial correlation. 

Although in19, the proposed algorithm considers the 
noise correlation, the validation was limited to a DBT 
system featuring an amorphous selenium (a-Se) 
detector, which is known to have approximately 
uncorrelated (white) noise. To the best of our 
knowledge, this algorithm has not been validated 
using a detector technology, which effectively 
produces noise with relevant correlation. 

Thus, the objective of this work is to further evaluate 
the performance of the previously proposed 
simulation method when applied to a system with an 
amorphous silicon (a-Si) detector coupled with a 
thallium-doped cesium iodide (CsI:Tl) scintillator. 
Such system is known to report noise with relevant 
spatial correlation, and thus this study is vital to 
support the simulation algorithm in scenarios where 
the correlation of noise cannot be neglected. 
 

2. Theoretical Background 
2.1. Noise model 

In raw DBT projections, generally, two main sources 
of noise are considered relevant. The fluctuations on 
x-ray photons flux, i.e. the quantum noise, is often 
modeled by a Poisson distribution, which is signal-
dependent. The electronic or thermal noise is 
commonly represented as a signal-independent 
Gaussian distribution. However, based on the Central 
Limit Theorem (CLT) it is feasible to model noise as a 
single Gaussian distribution, and thus: 

 
𝑦"(𝑖, 𝑗) = 	𝑦(𝑖, 𝑗) + 	𝜂(𝑖, 𝑗) + 	𝜏,																						 (1) 

 
𝜂(𝑖, 𝑗) 	∼ 	𝒩/0, 𝜎2𝑦(𝑖, 𝑗)34,																											 (2) 

 
where i and j are the 2D coordinates in the image, 𝑦" 
is the observed DBT raw projection,	𝑦 is the noise-free 
image, 𝜏 is the detector pixel offset, 𝜂 is a noise, 𝒩 is 
a Gaussian distribution with zero mean and 𝜎 is a 
function that models the noise standard deviation: 
 

𝜎2𝑦(𝑖, 𝑗)3 = 	5𝜆(𝑖, 𝑗)	𝑦(𝑖, 𝑗) +	𝜎78,															 (3) 

 
where 𝜆 is the spatially-dependent quantum noise 
gain and 𝜎78 is the electronic noise variance. The 
signal-dependent component models the variance of 
the quantum noise while the signal-independent 
component models the variance of the electronic 
noise. 	 

2.2. Noise correlation 

The models presented in Equations 1, 2 and 3 do 
not explicitly consider pixel spatial correlation in the 

overall acquisition process. However, in DBT 
systems, noise correlation plays an important role19,20.  
It is often a consequence of the acquisition physics, 
the finite pixel size leading to pixel crosstalk and the 
indirect x-ray detection due to the scintillation 
process21,22. 

According to 20, neglecting pixel correlation while 
performing image processing may affect the efficiency 
of the detection of subtle features like 
microcalcifications. 

The detector crosstalk can be modeled with a kernel 
estimated using the noise power spectral density 
(PSD) 19. Admitting the correlation, Equation 2 may be 
re-written to explicitly show spatial correlation: 

 
𝜂9(𝑖, 𝑗) 	∼ 	𝜎2𝑦(𝑖, 𝑗)3(𝐾 ⊛Ν{0,1}),																				 

 
(4) 

where K is the noise correlation kernel in the spatial 
domain. The math symbol ⊛ stands for the 
convolution operation.  This kernel was estimated as 
in Borges, et al 19. Note that, to guarantee Equation 3, 
the L2 norm of K must be unitary, i.e., ||K||2 = 1. 
 
2.3. Dose reduction 

Following Borges, et al.19, dose reduction was 
simulated in five steps: linearization, quantum noise 
injection, signal scaling, electronic noise injection and 
offset injection. 

In the first step, the standard dose image was 
linearized by subtracting the detector pixel offset. 
Next, quantum noise was injected to simulate a lower 
dose image. As the quantum noise is signal-
dependent, this process was performed using a 
variance-stabilizing transformation (VST), which 
converts the noise into signal-independent23. After 
noise injection at the VST range, the appropriate 
inverse transform was applied. 

Next, the overall signal was scaled down by a factor 
of 𝛾 (0 < 𝛾 < 1). The dose reduction factor is the ratio 
between the dose to be simulated and the dose of the 
input image. After scaling, the standard deviation of 
the electronic noise is below the expected by a factor 
of 𝛾 and extra signal-independent noise is added to 
compensate. 

The last step consists on adding the pixel offset, 
which was subtracted from the signal in the 
linearization step. 
 

3. Materials & Methods 
Homogeneous raw projections were acquired using 

a poly methyl methacrylate (PMMA) uniform phantom 
(3cm thick), commonly used for flat-fielding 
calibration. These images were used to validate the 
simulation method due to its uniformity, allowing a 
good estimation of the signal and the noise properties. 

All images were acquired using a General Electric 
(GE) Senographe Essential DBT system from the 
Barretos Cancer Hospital (Hospital de Amor, 
Barretos, Brazil). The DBT system's physical 
characteristics are shown in Table 1. 
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Table 1 - DBT system characteristics 4. 
GE Characteristic 

Detector type a-Si (CsI:Tl) 
Model Senographe Essential 
Projection number 9 
Tube angle span 25º 
Detector angle span Stationary 
Tube movement Step-and-shoot 
Pixel size 100µm 
Source: The author (2019). 

 
DBT projections were acquired at a range of 

radiation doses. We manually fixed the radiographic 
factors to 29kVp, rhodium target, and filter and then 
manually set the mAs to: 126, 90, 72 and 52. One 
acquisition was performed at each configuration, 
resulting in four sets of 9 projections each. The 126 
mAs set was used as input to create the lower dose 
simulated images. Table 2 shows the dose reduction 
factors used in this work. 

 
Table 2 - Dose reduction factor for each simulated image. 

Input 
image (mAs) 

Simulated 
image (mAs) 

Simulated 
dose (%) 

126 
90 71 
72 57 
54 43 

Source: The author (2019). 
 
Noise parameters were estimated according to the 

procedure described in previous work24. We 
evaluated the signal-to-noise ratio (SNR) and the 
normalized noise power spectrum (NNPS) in both 
simulated and real images, to measure the 
performance of the proposed algorithm. The SNR was 
measured using a sliding window of 64x64 pixels, and 
calculated as in Equation 5. 

 

𝑆𝑁𝑅(𝑖, 𝑗) = 	
𝜇(𝑖, 𝑗)
𝜎(𝑖, 𝑗)	,																									 (5) 

 
where 𝜇 and 𝜎 represent the local mean and the 
standard noise deviation from a window centered at 
(i,j), respectively. For each pair of real and simulated 
images, an SNR profile was plotted from the chest 
wall to nipple direction. 

Furthermore, the NNPS was estimated in a ROI of 
size 100x100 mm, at 60 mm from the chest wall 
according to Equation 6 and 7. A radial mean was 
performed in the frequency domain to generate a 1D 
profile. 

 

𝑁𝑃𝑆 =	
𝑁𝑠8

𝑀 H|ℱ(𝐼L −	𝑆L)|8
N

LOP

,													 (6) 

 

𝑁𝑁𝑃𝑆 =	
𝑁𝑃𝑆
𝐿8 	,												 

(7) 
 

where N is the number of pixel in a patch, s is the 
detector size, M indicates the number of patches 
taken from the image, ℱ indicates a Fourier transform, 
𝐼L and 𝑆L	are the signal and detrending surface of the 
patch, respectively, and L is the average value of I. As 
the estimated low frequencies do not represent the 
true noise behavior, we only show the data above 0.5 
Hz. 

The simulation error was measured by the average 
relative absolute error between the SNR maps of the 
simulated and real images. The NNPS was evaluated 
in the same way, following Equation 8. 

 

𝐸S = 	
100%
𝑀 	H

U𝑋LWXYZ −	𝑋L[\L]ZY^X_U
𝑋LWXYZ

N

LOP

	,									 (8) 

 
where 𝑋LWXYZ and 𝑋L[\L]ZY^X_ are the real and simulated 
quantities being evaluated, respectively, and M is the 
number of samples. 

Due to the limited number of realizations, the SNR 
and NNPS estimates reported strong variations. To 
minimize such variations, a second-order polynomial 
surface and an exponential curve were fitted to each 
SNR map and NNPS profile, respectively, before the 
errors were estimated, as done in 24. 

Finally, we measured the influence of the 
correlation kernel in the simulation process. The error 
between images simulated with and without the kernel 
was estimated. 

 
4. Results & Discussion 

Figure 1 illustrates the SNR profile along the chest 
wall to nipple direction. The measurements were 
performed at the central projection at different doses. 
The graphic shows that the SNR decreases towards 
the nipple. This is a consequence of the system 
uniformity calibration flat-fielding. 

Figure 2 shows the average relative absolute error 
between simulated and real images for each 
projection. The bars represent the standard deviation 
of the error. The average relative error in SNR 
between the simulated and real images is below 2.5% 
for all projections. 

Figure 3 shows the NNPS at the central projection 
for each simulated dose reduction. Note that the 
method was capable of accurately simulating the 
noise properties in the frequency domain. As 
expected, the aspect of the graphic is not flat due to 
the noise correlation generated by the image 
acquisition process. 

Figure 4 shows the average relative absolute error 
in NNPS between simulated and real images, which 
is below 5.5% for all projections. 

 
Figure 1 – SNR posterior-anterior profiles of the central projection 

for simulated and real images at different radiation doses. 

 



Revista Brasileira de Física Médica. 2019; 13(2):30-34. 

33 
Associação Brasileira de Física Médica ® 

Figure 2 – The average relative absolute error of the SNR maps 
for simulated and real images at different radiation doses for every 

projection. 

 
 

Figure 3 – NNPS profiles of the central projection for simulated 
and real images at different radiation doses, considering the 

correlation kernel in the simulation. 

 
 
The importance of the correlation kernel in the 

simulations can be noted in the graphic of Figure 5, 
which shows the NNPS of the central projection  

 
Figure 4 – The average relative absolute error of NNPS between 
simulated and real images at different radiation doses for every 
projection, considering the correlation kernel in the simulation. 

 
 
 
 
 

Figure 5 – NNPS average profile of the central projection for 
simulated and real images at different radiation doses, not 

considering the correlation kernel in the simulation. 

 
 

Figure 6 – The average relative absolute error of NNPS between 
simulated and real images at different radiation doses for every 

projection, not considering the correlation kernel in the simulation. 

 
 
when the correlation kernel is not considered in the 
simulation, i.e., 	𝐾 = 	𝛿(0). In this case, the simulation 
resulted in inconsistencies between the simulated and 
real images. This deviation is more precisely shown in 
Figure 6, where the relative error in NNPS between 
the simulated and real image can be up to 55%. 

 
5. Conclusion 

We evaluated the performance of a previously 
proposed method to simulate dose reduction using a 
system that features an a-Si detector. We validated 
the simulations by means of SNR and NNPS, 
comparing the results between simulated and real 
images. The results indicate a maximum error of 2.5% 
for the SNR and of 5.5% for the NNPS, evidencing the 
accuracy of the simulation process. We also 
compared images simulated with and without the 
correlation kernel. The results showed that neglecting 
noise correlation leads to an incorrect simulation, with 
errors up to 55% for the lowest dose considered in this 
study. Therefore, the proposed method performs a 
precise simulation in a DBT system featuring (a-Si) 
detector. 
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