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Abstract 
We aimed to explore the variability of PET radiomic features for varying reconstruction methods and quantification settings. 
The IQ-NEMA phantom was scanned five times with a sphere to background F-18 concentration ratio of 10:1. The activity 
and the scan duration were matched to result in typical counting statistics for 18F-FDG oncologic examinations. The images 
were reconstructed with OSEM and PSF reconstructions, then 99 radiomic features were extracted using two discretization 
methods: fixed bin number (FBN = 16, 32 and 64 gray levels) and fixed bin width (FBW=0.25). This scheme resulted in a 
total of 1,188 features, classified as having low (<5.0%), intermediate (5-29.9%) or high (≥30%) variability. In general, FBW 
discretization yielded more stable features. A total of 499, 558 and 131 features had low, intermediate and high variability, 
respectively. First-order features such as energy and entropy and textural features such as entropy (GLCM), long run 
emphasis and short run emphasis (GLRLM) were more likely to present low variability, regardless the reconstruction and 
discretization method. Other textural features such as large area emphasis (GLSZM), zone percentage (GLSZM) and 
complexity (NGTDM) had more frequently intermediate or high variability.These findings could facilitate features’ selection 
for further PET radiomic applications. 
Keywords: PET radiomic features; variability; quantification; standardization. 
 

Resumo 
O objetivo deste estudo é explorar a variabilidade de atributos radiômicos do PET para diferentes métodos de reconstrução 
e parâmetros de quantificação. Foram realizadas cinco imagens do simulador IQ-NEMA com uma razão de concentração 
esfera-fundo de F-18 de 10:1. A atividade radiativa e o tempo de aquisição das imagens foram combinados para alcançar 
uma estatística de contagens típica de exames oncológicos com 18F-FDG. As imagens foram reconstruídas com os 
métodos OSEM e PSF, obtendo-se em seguida a quantificação de 99 marcadores de imagens a partir de dois métodos de 
discretização: fixed bin number (FBN = 16, 32 e 64 níveis de cinza) e fixed bin width (FBW=0.25). Esta configuração resultou 
em 1.188 elementos de imagens (radiomic features), classificados quanto à variabilidade como baixa (<5.0%), intermediária 
(5-29.9%) ou alta (≥30%). Em geral, o método FBW resultou em atributos mais estáveis. Um total de 499, 558 e 131 
atributos tiveram variabilidades classificadas como baixa, intermediária e alta, respectivamente. Atributos de primeira ordem 
como energia e entropia, e marcadores de textura como entropia (GLCM), long run emphasis e short run emphasis (GLRLM) 
foram classificados como baixa variabilidade independentemente dos métodos de reconstrução e quantização. Outros 
atributos de textura como large area emphasis (GLSZM), zone percentage (GLSZM) e complexity (NGTDM) foram 
classificados mais frequentemente como variabilidade intermediária ou alta. Estes achados podem facilitar a escolha e 
seleção de atributos de imagens em aplicações futuras com radiômica em PET. 
Palavras-chave: Características Radiômicas do PET; variabilidade; quantificação; padronização. 

 
1. Introduction 

Positron emission tomography (PET) and 
computed tomography (CT) hybrid imaging (PET/CT) 
is widely used for clinical diagnosis, staging, 
prognosis and treatment response assessment (1,2). 
The ability to use imaging biomarkers such as the 
standardized uptake value (SUV) and metabolic 
tumor volume (MTV) emphasizes this type of PET role 
(3,4). It is a consensus today that the novel PET 
biomarkers based on texture, morphological and 
metabolic features (radiomics) provide substantially 
more information about the disease than the current 
imaging practices (5–11). In this regard, there is a 
growing interest to assess PET radiomics features 
stability and reproducibility (8,12,13). 

Radiomic features are affected by several factors, 
including image acquisition and reconstruction 

parameters, the feature calculation workflow as the 
image segmentation, discretization, feature 
mathematical design and calculation settings. 
However, the lack of standardisation in PET radiomic 
research is limiting its potential new applications 
(9),(14). Some authors have studied different 
robustness aspects to identify potential radiomic 
features or clusters (13,15,16). Nyflot et al (16) used 
realistic phantom simulations to evaluate the effects 
of noise and patient size on the feature variability 
(type II error) and image reconstruction on metrics 
bias (type I error). They used a fixed feature 
calculation setting of 256 gray level discretization and 
estimated the sample size that would be required for 
clinical trials to power for clinical effects of 30% and 
15% due to only stochastic variability. They found a 
large and feature-dependent PET features sensitivity 
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to imaging parameters. Pfaehler et al 13  on the other 
hand, explored PET radiomic feature variability using 
IEC/NEMA and 3D printed phantoms. They used 
different image reconstruction, noise and 
segmentation methods on the composition of feature 
clusters and studied two discretization methods: fixed 
bin number (FBN) of 64 gray levels and fixed bin width 
(FBW) of 0.25 and 0.05. Their results confirmed the 
sensitivity of PET radiomic features to imaging 
parameters and suggested image acquisition and 
processing standardization.  

Despite the increased use of radiomic for PET 
imaging, relatively little is known about the image 
reconstruction and quantification parameters impact 
on feature variability, limiting its standardization and 
clinical applications. Understanding the image 
biomarkers’ quantitative aspects may simplify the 
features’ selection, so this study uses IEC/NEMA 
phantom experiments to analyze PET radiomic 
features variability with respect to reconstruction 
methods and discretization parameters.  

2. Materials and Methods 

2.1. Scanner characteristics 

PET/CT imaging was performed on a LSO-based 
PET Siemens Biograph TruePoint TrueV (Knoxville, 
TN, USA) combined with a 16-slice helical CT scanner 
(Emotion 16; Siemens). PET images were corrected 
for random coincidences, normalization, dead time 
losses, scatter and attenuation. The attenuation map 
was obtained by a spiral CT scan (100 kVp, automatic 
tube-current modulation), 3 mm slice thickness and a 
standard soft tissue reconstruction kernel (Siemens 
B30s).  

2.2. Phantom preparation and imaging 

We used an IEC/NEMA body phantom with 6 
spheres (internal diameters of 10, 13, 17, 22, 28 and 
37 mm) with a sphere to background F-18 
concentration ratio of 10:1, according to the EANM 
guideline (17). To evaluate feature variability, five 
PET/CT images were sequentially acquired with two 
bed positions and the activity and the scan duration 
matched to result 416 MBq.s/kg (9.4 kg was the 
phantom weight considered in background 
concentration). This counting statistic represents 
typical whole-body oncologic examination (17).  

2.3. Phantom image reconstruction 

Images were reconstructed on a 168x168 matrix 
size (4.07 x 4.07 mm² voxels) with 3 mm slice 
thicknesses. Three reconstruction algorithms were 
used: (1) Ordered-Subsets Expectation-Maximization 
with 3 iterations, 21 subsets and 5 mm Gaussian filter 
(OSEM3D) (EARL-compliant); (2) Point Spread 
Function Ordinary Poisson with 3 iterations, 21 
subsets and 7 mm Gaussian filter (PSF7) (EARL-
compliant); and (3) Point Spread Function Ordinary 
Poisson with 2 iterations, 21 subsets and 2 mm 
Gaussian filter (PSF2). Both reconstructions PSF7 
and OSEM3D are compliant with the EANM standards 
for quantification, being the PSF2 the option of choice 
for detectability purposes (18).  

2.4. Radiomic feature extraction  

Spheres were segmented with the Beth Israel 
PET/CT plugin for FIJI (ImageJ, Bethesda, MD, USA) 
18 using the automatic segmentation with 41% 
threshold of maximum SUV (SUVmax). The 
segmented volumes of interest (VOIs) were analyzed 
with PyRadiomics, an open-source platform available 
at www.radiomics.io that enables a large panel of 
radiomic features extraction (21). We resampled the 
matrix grid to cubic voxels of 4x4x4 mm³ using B-
Spline interpolation and the discretization within each 
VOI were scaled to FBN = 16, 32 and 64 grayscale 
levels and FBW = 0.25. The radiomic feature classes 
and corresponding features as defined by 
Griethuysen et al (21) are presented in the 
supplementary material. A total of 99 features were 
calculated, including 18 first order and 81 textural 
features: 16 gray level run length matrix (GLRLM), 16 
gray level size zone matrix (GLSZM), 5 neighborhood 
gray-tone difference matrix (NGTDM) and 22 gray 
level co-occurrence matrix (GLCM). GLCM features 
were computed by 2 different methods: using 13 
matrices, one calculated for each spatial direction 
separately, after which the mean of these values is 
returned (method A); and using only one matrix, 
weighted by factor 1 and summed, without the 
average step (method B) (22).  

2.5. Variability estimation and analysis 

Feature variability was estimated through a 
variation of the metric used for maximum Standard 
Uptake Value (SUVmax) (18) by calculating the 
average coefficient of variation for each 
reconstruction and discretization as follows: 

𝑄𝑣𝑎𝑟
∑ (𝜎𝑖/M)
6
𝑖=4

3
 (1) 

Where 𝜎𝑖 is the standard deviation of the feature 
across realizations for sphere i, and M is the mean 
value of the feature. The 10 mm, 13 mm and 17 mm 
spheres were excluded from the analysis due to 
insufficient pixels for quantification of textural 
features. Only the three largest spheres were 
included (volumes: 5.6, 11.5 and 26.5 cm³). 

Features were classified into three ranges of 
variability: low (<5.0%), intermediate (5-29.9%) and 
high (≥30.0%) and the total number of stable features 
was then used as a measure to investigate the 
influence of reconstruction and discretization on 
feature stability.  

Low variability level was defined based on our 
previous efforts to study the variability of SUVmax 
(18), while the intermediate and high levels were 
defined based on the rationale presented by Galavis 
et al (15). 

3. Results 

A total of 499, 558 and 131 features quantifications 
were ranked as low, intermediate, and high, 
respectively (Table 1). PSF7 (FBN=32) was the 
reconstruction that yielded more features with low 
variability (n=59); and PSF7 (FBN=16) was those with 
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higher variability (n=55). PSF7 was, therefore, very 
sensitive to the number of bins. Concerning the 
discretization method, FBW=0.25 and FBN=32 
presented the smallest number of features with high 
variability (n=14).  

Table 1 - Number of features according to variability classification.  

 FBW:0.25 FBN:16 FBN:32 FBN:64 

Low 

OSEM 56 46 45 47 
PSF2 37 32 37 34 
PSF7 36 20 59 50 

Intermediate 

OSEM 38 51 51 41 
PSF2 57 61 53 56 
PSF7 59 24 38 29 

High 

OSEM 5 2 3 11 
PSF2 5 6 9 9 
PSF7 4 55 2 20 

Variability: low (<5.0%), intermediate (5-29.9%) and high 
(≥30.0%). FBN: fixed bin number. FBW: fixed bin width. 

Figure 1 presents the variability (Qvar) of 20 
selected features for improved readability, where 
GLCM is presented for the setup using only one array 
considering all 13 directions simultaneously, without 
an average step. The features in Figure 1 were 
selected based on previous reports 
(10,13,15,16,22,23), the complete list of all 99 
features is available in the supplementary material 
(Table S2).  The feature named Dissimilarity reported 
in other studies (10,16) has been discontinued in 
Pyradiomics, as it is mathematically equal to 
Difference Average (GLCM) (21); and high intensity 
large area emphasis (HILAE - GLSZM) reported by 
Hatt et al 21 is mathematically equal to large area 
emphasis, the nomenclature used in Pyradiomics 
(Figure 1). Colour blue, yellow, and red highlights the 
features classified as low, intermediate, and high 
variability, respectively. Some quantifications were 
possibly negatively biased because outliers, since the 
standard deviation in equation 1 is sensitive to 
replications number and hence the Qvar. For 
example, the feature Large Area Emphasis (GLSZM) 
at OSEM reconstruction (FBN=64) achieved high 
variability (Qvar = 80.7%) while its quantification at 
FBW = 0.25 had an intermediate variability (Qvar = 
14.2%). The higher variability is solely explained by 

one measurement three-fold higher in one of the 
spheres.  

The presented variability in Table 1 and Table S2 
support future radiomic studies by selecting the 
adequate reconstruction, radiomic features and 
discretization method. For example, for a given 
reconstruction algorithm (eg.: OSEM or PSF) and 
discretization method (eg.: FBN=64 or FBW=0.25), 
one may select a subset of features from Figure 1 
(eg.: 10-20 features) to investigate their disease 
relationship.  

4. Discussion 

This study presents a pool of features that might be 
used to simplify future PET radiomic applications. We 
classified radiomic features according to their 
variability performance for different discretization 
methods and using reconstruction algorithms 
currently used in clinical practice (24–26). However, 
the variability analysis was performed through a 
simple metric and phantom preparation used to 
characterize the SUVmax variability with respect to 
image noise and reconstruction algorithm previously 
reported by Machado and colleagues (18). It was 
found a 1.5% < Qvar < 4.6% for SUVmax, a biomarker 
widely used in several oncologic PET studies. 

We found also that the textural features presented 
worst variability more frequently than first-order 
features. Pfaehler and colleagues (13) used 10 
replications of the IEC/NEMA and 3D printed 
phantoms to demonstrate the impact of contrast 
(sphere to background concentration ratio), image 
reconstruction, noise, discretization and 
segmentation methods on the repeatability of PET 
radiomic features through intraclass correlation 
coefficients (ICC) and cluster analysis. Here, we 
evaluated additional discretization parameters and 
assessed variability through a simpler method. 
Despite the agreement of variability levels of several 
features (for matched reconstruction and 
discretization), the direct comparison with our results 
is challenging because of differences in metrics used 
(Qvar versus ICC - data shown for EARL-compliant 
reconstruction (13)) and the number of features (here, 
99 features versus 246 features in their work, we did 

 
Figure 1 - Quantification variability of 20 selected features. Variability: low (<5.0%), intermediate (5-29.9%) and high (≥30.0%) are 

highlighted in colours blue, yellow and red, respectively.
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not include in this work morphological features and 2D 
measures of textural features) included in the 
analysis. Nevertheless, our results are also in 
concordance with Pfaehler et al (13)  that FBW=0.25 
yields more stable features (Qvar low and 
intermediate) than FBN=64, but we found that 
FBN=32 were equivalent to FBW=0.25 respective to 
stable features number. In addition, resampling with 
FBN lower to 32 gray levels (eg.: FBN = 16) should be 
considered with caution due to the high correlation 
among features (10). Indeed, each feature shall be 
analyzed individually before choosing predictors of 
clinical outcomes. Figure 1 shows that some features 
are highly stable regardless the reconstruction and/or 
discretization method.  

Pfaehler et al (13) also demonstrated that lower 
uptake regions are more sensitive to the 
segmentation method. Our study only used 41% 
threshold of SUVmax and used spheres with 
radiopharmaceutical concentrations 10:1 with respect 
to the background. In such case the 
radiopharmaceutical concentration is considerably 
higher than background, thus allowing for more 
consistently contouring the sphere, regardless the 
segmentation method. For this reason, our results 
may be extrapolated only to evaluations where 
lesions have radiopharmaceutical uptake 
concentration of 10:1 or higher, otherwise 
segmentation constraints shall be observed.  

This study also evaluated two different methods for 
computation of GLCM features. A markedly 
improvement in variability was observed in PSF7 
FBN=64 when method A was applied. In general, the 
features Cluster Prominence and Cluster Shade 
performed better in method B for PSF2 and FBN=16, 
32 and 64; the feature Maximum Probability 
performed better in method A for all quantization 
settings; and the feature Joint Average significantly 
worsen in method B, PSF2, FBN=64.    

Nyflot et al simulated 50 statistically independent IQ 
NEMA images from a GE D670 PET/CT scanner with 
PSF reconstruction (5 mm Gaussian filter) and 
performed quantifications with FBN = 256 (16). They 
also found complex trends in the coefficient of 
variation (variability) as a function of features, sphere, 
patient sizes and reconstruction parameters (by 
changing the iterations number from 2 to 6 in the 
reconstruction process).  

It is important to stress that feature’s choice also 
depends on the disease (22). For example, a given 
feature with intermediate variability may be clinically 
better than other with lower; since feature variation is 
sufficiently large to detect a difference in disease 
presentation. Because several features are highly 
correlated and redundant, a maximum number of 
around ten features is usually used at the reduced 
space preserving the information that explains a 
biological or clinical phenomena (10,22,23,27–29).  

A heuristic comparison among our findings with 
those found in Pfaehler (13) and Nyflot et al (16), 
identified common features with reasonable 
variability, for example: 1) energy and entropy from 
first order statistics metrics, 2) difference average and 

entropy from GLCM, 3) long run emphasis and short 
run emphasis from GLRLM, 4) zone percentage and 
large area emphasis from GLSZM, and 5) complexity 
and coarseness from NGTDM. Therefore, we 
recommend that these features are included in further 
PET radiomic studies to simplify the study design.   

A limitation of this study is the use of only high 
uptake and homogenous spheres, not mimicking a 
real clinical condition. However, we presented a 
starting point where features, reconstruction method 
and quantification setup might be mined for further 
radiomic research. An additional drawback in 
radiomic studies are variations in nomenclature and 
formulas among studies and quantification software 
(9), which have recently been subjected to 
standardization along with other reporting standards 
(30). Here, we highlighted the features HILAE and 
Difference Average, which have been reported to 
yield clinical significance and presented low to 
intermediate variability in most reconstruction and 
quantization setups.  

In clinical practice, the use of PSF reconstruction is 
preferable because it allows for improved lesion 
detectability and reduced image noise (18,25,31). Our 
results present several radiomic feature variability 
measures using two PSF reconstruction settings. In 
addition, the ability of PSF reconstructions to improve 
the system spatial resolution is also expected to 
detect smaller differences in textural features. This 
study did not assess type I error, wich informs the 
feature variation between different scanners. Thus, 
one must be careful when selecting radiomic features 
for multicenter studies and harmonization techniques 
shall be considered (32).  

The radiomic features extraction provides a 
powerful method to assess differences in tumor 
biology by identifying predictors that may have a 
functional role in specific phenotypes. Our results 
contribute to overcoming standardization challenges 
that need to be addressed before radiomics can safely 
be implemented in the clinic. 

5. Conclusions 

Our data show the PET radiomic features' 
sensitivity regarding the reconstruction and 
discretization method, allowing researchers to assess 
a starting point for feature selection, reconstruction 
and discretization’s choice in further PET radiomic 
studies.  Some often reported features were likely low 
variability, regardless of the reconstruction and 
discretization method, while others (mostly textural 
features) were likely intermediate or high variability 
depending on the reconstruction and/ or discretization 
setup. 
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