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Abstract 
This study aims to conduct an integrative review of research on computational methods used for mammography quality 
control while addressing the issue of subjectivity in existing quality control processes. We conducted an integrative search 
in three electronic databases to achieve our objective. Our search included studies published within the last eleven years, 
with a specific focus on original research that highlights the application of computational methods for assessing 
mammography image quality. The selected studies have been meticulously categorized based on the methodologies 
employed, the input variables used for image quality assessment and the overall quality of the findings. This categorization 
offers a holistic overview of the current state of research in this field. Our comprehensive review of these studies underscores 
the immense potential of automated systems designed to enhance image quality assurance in mammography. These 
computational methods offer a promising solution to mitigate subjectivity issues in the quality control process related to the 
reading of the image. By doing so, they hold the promise of improving clinical routines and ensuring the reliability of 
mammography diagnostics.  
Keywords: Artificial Intelligence; Mammography; Quality Control; Image processing; Phantoms; Imaging. 
 
Resumo 
Este estudo tem como objetivo realizar uma revisão integrativa de pesquisas sobre métodos computacionais utilizados para 
controle de qualidade em mamografia, ao mesmo tempo em que aborda a questão da subjetividade nos processos de 
controle de qualidade existentes. Realizamos uma busca integrativa em três bases de dados eletrônicas para atingir nosso 
objetivo. Nossa busca incluiu estudos publicados nos últimos onze anos, com foco específico em pesquisas originais que 
destacam a aplicação de métodos computacionais para avaliação da qualidade da imagem mamográfica. Os estudos 
selecionados foram meticulosamente categorizados com base nas metodologias empregadas, nas variáveis de entrada 
utilizadas para avaliação da qualidade da imagem e na qualidade geral dos resultados. Esta categorização oferece uma 
visão holística do estado atual da pesquisa neste campo. Nossa revisão abrangente desses estudos ressalta o imenso 
potencial dos sistemas automatizados projetados para melhorar a garantia da qualidade da imagem em mamografia. Esses 
métodos computacionais oferecem uma solução promissora para mitigar problemas de subjetividade no processo de 
controle de qualidade relacionado à leitura da imagem. Ao fazer isso, eles prometem melhorar as rotinas clínicas e garantir 
a confiabilidade do diagnóstico mamográfico. 
Palavras-chaves: Inteligência artificial; Mamografia; Controle de qualidade; Processamento de imagem; Fantomas; 
Imagens. 
 
 
1. Introduction 

Breast cancer poses a significant global health 
challenge, standing as the most prevalent and deadly 
disease among women (1). In 2020, it recorded over 
2 million new cases in women, resulting in more than 
600 thousand tragic fatalities (2). Early diagnosis, 
primarily through mammography, is at the heart of 
confronting this formidable adversary. Mammography 
employs low-energy X-rays, necessitating breast 
compression to reduce tissue overlap and ensure 
clear visualization of anatomical structures (3,4). The 
World Health Organization emphasizes 
mammography's role in identifying cancer-related 
alterations before observable symptoms emerge (5). 

To ensure reliable diagnoses, mammography 
equipment must yield images with impeccable 
visibility of low-contrast areas, high spatial resolution, 
and an extensive dynamic range (6). Routine quality 
control assessments, aligned with national standards 
and International Atomic Energy Agency (IAEA) 
guidelines, are indispensable(7). These assessments 
rely on phantoms, with the American College of 
Radiology (ACR) phantom being renowned in image 
quality assessment in mammography. These 
phantoms meticulously simulates both normal and 
abnormal breast features, including fibers, 
microcalcifications, and characteristic masses (6). 
Evaluating these structures in images can be 
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subjective, particularly in centers with multiple 
operators (8). 

To address these limitations and enhance image 
quality assurance, computational methods become 
imperative. This study conducts an integrative review, 
scrutinizing the diverse methodologies used to 
automate quality control procedures in 
mammography equipment. These methodologies 
employ simulator objects and equipment parameters 
adjustments to enhance precision and objectivity in 
image analysis. 

The specific scientific question at the heart of this 
investigation revolves around improving the 
objectivity and precision of quality control procedures 
in mammography by integrating computational 
methods. It seeks to contribute to the field by 
providing a comprehensive review of the 
methodologies employed in automating quality control 
procedures and underscores their relevance in the 
current clinical context. Our approach involves a 
thorough analysis of existing literature, synthesizing 
findings to highlight advancements in this area and 
their potential to enhance the accuracy and objectivity 
of image assessments in breast cancer diagnosis. 

 
Figure 1: Example of a phantom for image quality tests 

in mammography, following the International Atomic Energy 
Agency. 

 
Source: Lee et al. (2017)  

2. Study Development 

To carry out the integrative review, we used the 
methodology of Strack et al. (2016) (10), which is 
described in Figure 2. 

According to Figure 2, the first step of an integrative 
review is identifying the research problem. The 
following guiding questions were formulated: 1) What 
are the most recent methodologies being used in 
image processing of simulators? 2) What are the 
recent methodologies that are being applied to the 
quality image analyses using phantom images?; 3) 
What is the input information of these 
methodologies?; 4) What were the results achieved 
with the methodologies? Based on the questions, the 
following keywords are defined: “automat”, “learning”, 
“mammography”, “quality assurance”, “quality 
control”, “phantom”, “image”. 

 
 

Figure 2: Steps of integrative systematic literature review. 

 
Source: Adapted from Strack et al. (2016) 

After the keyword definition, two search strategies 
were defined: the first, ((automat*) OR (learning)) 
AND ((mammography) AND ((quality assurance) OR 
(quality control)) AND (phantom) AND (image); the 
second, ((automate) OR (automatic) OR (learning)) 
AND ((mammography) AND ((quality assurance) OR 
(quality control)) AND (phantom) AND (image), where 
the wild card in ”automat*” means that will be taken all 
the words’ variations starting with ”automat”. 

These keywords were defined to allow the selection 
of papers that present computational methods to 
image quality tests in mammography using any 
phantom. The search strategies were applied to the 
following databases: PubMed, IEEEXplore, and 
Science Direct. The second search question was 
applied in the Science Direct database because it 
does not accept the asterisk, which has in the first 
search question, wild card on the search strategy. In 
that way, some suffix variations of ”automat” were 
inserted. The second step is defining the inclusion and 
exclusion criteria according to Table 1 and Table 2. 

 
Table 1: Step 2 of the integrative review: Inclusion criteria 

Inclusion Criteria 
Only articles published in indexed journals 

Published from 2011 to 2023 
English, spanish or portuguese language 

Original article 
Source: The author (2024). 

 

Table 2: Step 2 of the integrative review: Exclusion criteria 

Exclusion Criteria 
Articles in duplication 

Articles not related to the computational methods to 
quality controls in medical imaging equipment or 

computational methods that impacts directly in the 
image quality 

Articles that use a different phantom from the ACR 
Articles that don’t use images from simulation 

objects (phantoms) 
Articles that are related to tomosynthesis exams 

Articles that are related to  automated control quality 
that do not use the ACR phantom 

Source: The author (2024). 
 
 

 

 1 

 Identification of the research problem: guiding 
questions, keywords, search equations and databases 

 2  

 Establishment of inclusion and exclusion criteria, and 
databases searches 

 3 
 

Identification of the pre-selected studies  

 4 

 

Analysis and categorization of the selected papers 

 5 

 

Analysis and results interpretation 

 6 

 Preparation of an article with a description of the 
research and presentation of the results obtained 
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After the application of the described criteria, 240 
papers were pre-selected. Moreover, the titles and 
abstracts were evaluated to select the publications 
that had the potential to answer the guiding questions 
and attended the inclusion and exclusion criteria. 
From that, fourteen articles were selected for a full 
reading. After a criteria analysis, seven articles were 
able to answer the guiding questions. This concluded 
step 3 of the integrative review. 
 

Figure 3: Fluxogram of step 3 of the integrative review: 

identification of the pre-selected and selected studies 

 

Figure 3 shows that, despite the number of 
publications resulting from the search, there are few 
papers that present computational methods applied to 
image quality control with ACR Digital Mammography 
Phantom. Most of the 240 pre-selected are related to 
developing new phantoms, new approaches to 
achieving mammography quality control, implications 
of using automatic exposure in mammography 
exams, and new approaches to automatic exposure 
techniques. Seven publications were included in the 
integrative review, and this low number makes it 
evident that the scientific literature still lacks studies in 
the area.  

The questions below were used to analyze and 
categorize the selected articles specified in Table 3. 

1. Uses image pre-processing techniques? 
2. A method to assess image quality is presented?  
3. Uses additional operational parameters as input 

(beyond phantom images)? 
 

Table 3: Step 4 of the integrative review: Analyzes and 

categorization of the selected publications. 

Publications Analyzed (1) (2) (3) 

Alvarez et al., (2012)11 Yes Yes No 

Asahara and Kodera (2012)12 Yes Yes No 

Chen et al. (2016)8 No No No 

Guzmán et al. (2019)13 Yes Yes No 

Sundell et al. (2019)6 Yes Yes No 

Sundell et al. (2022)14 Yes Yes No 

Ho, Hwang e Tsai (2022)15 Yes Yes No 

Source: The author (2024). 

2.1. Methodologies Proposed by Authors 

Alvarez et al., (2012)11 used discrete wavelet 
transform (DWT) and multiresolution analysis. Each 
target was extracted separately, and Daubechies 10 
base as the mother wavelet is applied in all of the 
procedures to highlight the characteristics of 
structures present in each ROI. After DWT 
enhancement of the artifacts in the image, 
morphological procedures were used to segment the 
structures of interest. Then, the images are binarized 
to estimate the position of the artifacts. After 
binarization, erosion and dilation filters are applied to 
the binarized image to smooth the objects in the 
image and remove small-sized objects produced by 
binarization. After this image treatment, various tests 
were performed to ensure that the segmented objects 
are the corresponding structures in the phantom. 

To accept the mass detection, the area, and the 
eccentricity (ratio between the focus of the structure 
and its significant axis length) of the segmented 
structure were tested. Only masses with an 
eccentricity < 30% of the item area in the phantom, 
were scored with grades 1.0, 0.5, or 0, respectively. 
For fibers acceptance, eccentricity and angle were 
tested. Then, only structures with eccentricity > 0.9 
and an angle of 35 to 55 degrees (for fiber 1, fiber 3, 
and fiber 5 ROIs) or 125 to 145 degrees (for fiber 2 
and fiber 4 ROIs) were considered for scoring. Then, 
similarly to mass groups, segmented areas ≥ 80%, 
within 30% and 80%, or < 30% of the item area in the 
phantom, were scored with grades 1.0, 0.5, or 0, 
respectively. 

For microcalcifications, only structures with area 
between 0.5 to 1.5 times the corresponding 
microcalcifications in the phantom were maintained in 
the ROI. Then, each microcalcification is cross 
correlated with the first group, the one with the greater 
size. It was used as the reference image matrix. The 
ROIs were compared to the reference matrix using the 
correlation similarity parameter. Then, the 
microcalcifications group is scored according to the 
quantity that was located: if 4 to 6 microcalcifications, 
three microcalcifications, or < 3 microcalcifications 
were detected, then a score of 1.0, 0.5, or 0, 
respectively, is given to the group. The results 
obtained by the algorithm are compared by three 
professionals using 30 phantom images, with the tube 
voltage of 23 to 32 kVp and three levels of average 
glandular doses (AGDs) for each kVp resulting in 
AGDs of 0.11 to 3.4 mGy with Mo/Mo 
(Molybdenum/Molybdenum) as anode/filter 
combination. The results showed that the scores 
obtained by the algorithm are greater in the cases of 
masses and fibers. However, in microcalcifications, 
radiologists obtained higher scores with a low 
difference. 

Asahara and Kodera (2012) (12) developed a 
computer algorithm to evaluate images of the ACR 
phantom automatically. It used the following 
methodologies: edge detection of phantom’s wax, 
nonuniformity correction of the background, 
correction for magnification, and also the calculation 
of the cross-correlation coefficient by image matching 
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technique. In the template image to be used in the 
image matching technique, the phantom’s wax was 
removed and radiographed, where all the phantom 
structures could be viewed. A total of 2 template 
images, with phantoms with boards thickness of 2 and 
4 cm, and 10 ACR phantom images were used. The 
algorithm results are compared with the averaged 
results of the observer studies by six skilled 
professionals.  

The results showed that the proposed methodology 
was consistent with the evaluation scores of the 
skilled observers. In an evaluation of the 
microcalcifications groups, the algorithm made two 
errors, in which specklike structures were mistaken as 
microcalcifications. These errors could be reduced if 
there was improved pre-processing in the images. In 
another way, the study has some disadvantages, 
such as the removal of the wax from the phantom, 
which can be prejudicial to the phantom’s integrity and 
has a high price. 

Chen et al. (2016)(8) modulated a combination of 
operational parameters and estimated the effect of 
each parameter on the image quality using Taguchi’s 
analysis. The Taguchi method uses orthogonal arrays 
of the experimental group to obtain extensive data 
about factors from only a few experiments. Thus, the 
authors combined analysis of variance and loss 
functions in the study to find the optimal combination 
of mammography image screening factors. Four 
mammography related factors were used: target, kVp, 
mAs, and Field-Of-View (FOV), and 2 or 3 levels of 
each were considered. All these factors are combined 
and organized into 18 groups. Based on the results, 
the authors concluded that kVp, mAs, and FOV are 
dominant factors since their variation directly impacts 
image quality. In this way, it is possible to detect the 
causes of poor image quality. 

According to the author, the contrast to noise ratio 
(CNR) is a good metric for describing the signal 
amplitude relative to the background noise in an 
image, which is particularly useful for simple objects. 
The author concludes that the microcalcifications 
yielded the highest CNR values because the 
absorption coefficient is higher for these structures, 
which makes an essential indicator in the breast 
cancer screening process. However, there is a high 
variability for the CNR obtained in the 
microcalcifications, which makes it possible to infer 
that it is necessary to perform additional analysis to 
relate the results with the human visual perception. 
Furthermore, complement the CNR metric with 
perceptual quality models to obtain a better image 
quality metric. 

In the last step, natural scene statistics (NSS) 
models were obtained. Two levels of CNR were 
extracted to identify this ability of NSS, which captured 
statistical consistencies of the images concerning 
CNR and provided relevant tools for estimating the 
effect of distortions in the images. 

Guzmán et al. (2019) (13) provided an analysis of 
the ACR phantom’s structures using the signal-to 
noise ratio (SNR), CNR, and NSS techniques. A 
dataset of 126 images was acquired with exposure 

parameters and operating conditions ranging from 40 
to 80 mAs and 26 to 32 kVp. The images are 
generated for anode target materials configurations 
Mo/Mo, Mo/Rh (Molybdenum/Rhodium), and Rh/Rh. 
The general methodology adopted is the following: i) 
Capture the phantom images of mammography; ii) 
Select regions for quality assessment; iii) Calculate 
SNR, CNR, and NSS features from each phantom 
image structure. 

The SNR describes the visibility of an object. Even 
though SNR does not predict human judgments of 
human quality, according to ACR standards, an object 
with an SNR higher than 50 is often detectable. After 
the calculation of SNR for each ROI and image, the 
results obtained by the author allow us to conclude 
that SNR is a poor predictor of human visual 
judgments. The lowest SNR value was recorded for 
exposure parameters 80 mAs and 32 kVp in Rh/Rh, 
and the highest SNR value was recorded for exposure 
parameters 40 mAs and 26 kVp in/Mo. However, the 
image with the lowest SNR has poor perceptual image 
quality, but it is greater than 50, which is the minimum 
value to consider an object detectable. Due to 
anode/filter combinations, high and low SNR were 
presented for the same exposure parameter due to 
anode/filter combinations. Therefore, there is a need 
to develop quality metrics that predict human 
judgments well. 

Sundell et al. (2019)(6) developed software in order 
to evaluate ACR phantom images using discrete 
wavelet transform (DWT) and multiresolution 
analysis. 

First, the phantom’s wax area, which contains the 
ACR phantom structures, is located and isolated, and 
the image is rotated to the correct orientation. Each 
target (masses, fibers, and microcalcification groups) 
is extracted from the image and analyzed separately. 
The DWT and multiresolution analysis are used to 
enhance target visibility. The decomposition is done 
using Daubechies 45 base functions. After 
multiresolution analysis, the image is binarized. The 
measured length has to be 0.5-1.5cm to accept a fiber 
as being detected. In addition, the measured fiber 
angle is used as a detection requirement. A score of 
0.5 points is given to a detected fiber. 

The results of the automated analysis were 
compared with four professionals: 2 medical 
physicists and two medical physicist residents. It used 
80 phantom images: 60 ACR phantom images 
randomly selected and 20 using ten different dose 
levels (these images were used to validate the 
software with different noise contents). The mean 
glandular doses were 0.1 – 4.1 mGy. Tube voltage 
was 28 kVp and exposures were 8, 11, 14, 25, 40, 64, 
80, 125, 220, and 320 mAs. The anode/filter 
combination used is not specified. 

Therefore, the mean number of detected fibers per 
image was 4.4 ± 0.5 and 4.4±0.6 for the automated 
and visual analyses. The mean number of detected 
microcalcification groups per image was 4.0±0.1 and 
3.7±0.4 for the automated and visual analyses. 
Furthermore, the mean number of detected masses 



Revista Brasileira de Física Médica (2024) 18:761 

Associação Brasileira de Física Médica ®   5 

per image was 4.2±0.7 and 4.1±0.5 for the automated 
and visual analyses. 

Ho, Hwang and Tsai (2022)(15) developed a 
framework with the aim of automating image quality 
control in mammography equipment. Its methodology 
was based on the use of the machine learning 
algorithm called Support Vector Machine (SVM), and 
tabular data extracted from the respective subimages 
of the ACR phantom structures. 

Four hundred and sixty-one (461) phantom images 
were obtained, taken by medical physicists. The 
dataset was subdivided into training (80%) and test 
(20%). First, the structures of the phantom images 
were cropped, therefore, 16 sub-images were 
obtained, each corresponding to a structure: masses, 
fibers and microcalcifications. The study does not 
specify the methodology adopted to carry out this 
selection. Each of the structures had a class: visible 
(1), barely visible (0.5) and not visible (0). 

Subsequently, features were extracted from each of 
the subimages. These features were associated with 
global, local, position and texture information of the 
image. The position feature indicates the location of 
the structures in the phantom. The global features 
represent the mean and standard deviation of the gray 
level, the matrix size, and the gradient of each image. 
Local features represent the mean and standard 
deviation of gray levels within the ROI and image 
background. Also, for local features, they extracted 
the contrast between the ROI and the background, the 
SNR, the gradient, and the texture information of each 
subimage. A total of 159 features were extracted. 

Some different techniques were applied in order to 
evaluate the impact on the results, such as, for 
example, the Principal Component Analysis (PCA) 
technique, which aims to reduce the dimension of the 
input data. A number of components were selected 
that explain 95% of the data variance. The previously 
mentioned position characteristic was also used, and 
not used, in training and testing in order to evaluate 
its impact on results. 

When carrying out training and testing using PCA, 
the author comments that there was no major impact 
on the results, however, the training time when 
applying it was drastically reduced. When removing 
and inserting the position characteristic, the author 
comments that there is a highly negative impact on 
the metrics, decreasing around 5% for each structure: 
fibers, masses and microcalcifications. In general, the 
proposed methodology obtained 90.2%, 98.2% and 
88.9% accuracy for fibers, masses and 
microcalcifications. 

Sundell et al. (2022)(14) developed an automated 
method for image quality control in mammography 
equipment using deep learning algorithms and image 
processing techniques. 

The database used by the author consisted of daily 
image acquisition routines in mammography image 
quality control tests. In order to obtain a wider 
database, that is, images with variations in quality, the 
author changed the noise of some images, either 
decreasing or increasing it. In total, 800 unaltered 
images were used, and 1840 images with their noise 

altered. After that, the images were processed. To do 
this, the author initially cut out the internal region of 
the phantom in two steps: first, the phantom area was 
extracted, based on the difference in the region's 
signal with the image background; Second, the 
internal area of the phantom was extracted by 
detecting the abrupt differences of pixels in the x and 
y axis. After that, the phantom images were rotated, 
when necessary. Each of the image structures was 
extracted, that is, masses, fibers and 
microcalcifications, generating, for each phantom 
image, 16 subimages. The subimages were 
normalized and processed later. Low-frequency 
background non-uniformities were extracted from the 
subimages using two-dimensional polynomial 
approximations. Fifth-order polynomial 
approximations were applied to the fibers, and first-
order approximations to the microcalcifications and 
masses. Ninety percent (90%) of the images were 
designated for training, and 10% for testing. After that, 
the training steps were applied. 

Eight CNN architectures were trained in order to 
classify images as visible, or barely visible (class 1), 
or not visible (class 0). The best configuration was the 
one that used 6 convolutional layers, achieving an 
overall accuracy of 95.2%. For fibers, a mean and 
standard deviation of the number of visible structures 
of 4.3 ± 1.4 and 4.4 ± 1.3 were obtained for 
professionals and the automated method. For 
microcalcifications, 3.8 ± 0.8 for both professional and 
automated methods. And for the masses, 4.4 ± 0.9 
and 4.5 ± 0.8 for professionals and the automated 
method, respectively. 

2.2. General Discussion 

In this study, we conducted an integrative review of 
computational methods applied to image quality 
control in mammography. After a thorough selection 
process, we analyzed fourteen articles and identified 
seven that were able to address our guiding 
questions. Notably, our findings highlight a scarcity of 
research in this specific area of study, as the majority 
of the pre-selected papers focused on topics such as 
phantom development and novel approaches to 
mammography quality control. 

When we compare our results to existing literature, 
it becomes evident that the field of computational 
methods for mammography image quality control is 
still in its infancy. While some promising approaches 
have been proposed, such as the use of DWT and 
machine learning algorithms, there remains a need for 
further validation and refinement. For instance, 
Alvarez et al. (2012)(11) presented a method 
involving DWT and morphological procedures, 
showing potential for mass and fiber detection. 
However, their study requires further clinical 
validation to assess its practical relevance. 

Some crucial aspect for consideration is the impact 
of glandular dose, which significantly influences both 
image quality and patient welfare (16). As elucidated 
in prior studies, certain images analyzed for 
evaluation were carefully curated within specific 
glandular dose ranges, enhancing the robustness and 
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reliability of the investigation. Nevertheless, this paper 
directs its focus primarily towards the discourse 
surrounding its computational methodologies. The 
aim is to comprehensively grasp how these 
approaches can influence mammography services, 
particularly in terms of image quality control across 
mammography equipment, as presented below in the 
discussions. 

Asahara and Kodera (2012)(12) introduced a 
computer algorithm for ACR phantom image 
evaluation, aligning well with skilled observers. 
Nevertheless, their method's limitation of removing 
phantom wax and its potential impact on phantom 
integrity should be addressed in future research. 
Chen et al. (2016) (8) provided insights into the critical 
role of operational parameters in image quality but 
noted the need for further analysis to relate these 
findings to human perception. 

Guzman et al. (2019)(13) explored SNR and CNR 
techniques but highlighted the need for improved 
quality metrics. Sundell et al. (2019)(6) leveraged 
DWT and multiresolution analysis, achieving 
promising results in automated image quality control. 
Ho, Hwang, and Tsai (2022)(15) introduced a 
machine learning-based framework, offering high 
accuracy in detecting various structures in ACR 
phantom images. Sundell et al. (2022)(14) notably 
introduced an automated method using deep learning 
algorithms and image processing techniques, 
achieving impressive accuracy in classifying images 
as visible, barely visible, or not visible. This approach 
represents a significant advancement in the field. 

However, as we discuss these findings, it's 
essential to acknowledge certain biases and 
limitations in our study. Firstly, our search may have 
missed relevant papers due to variations in keywords 
and indexing practices. Additionally, the limited 
number of selected articles emphasizes the paucity of 
research in this field, limiting the generalizability of our 
findings. Also, the absence of clinical validation in 
some proposed methods necessitates future studies 
to bridge the gap between computational techniques 
and practical clinical applications.  

3. Conclusion 

In conclusion, our integrative review of the existing 
literature on computational methods for 
mammography image quality control highlights the 
nascent nature of this field. While several promising 
approaches have been proposed, including 
techniques like DWT, machine learning algorithms 
and advanced image processing, there is still much 
ground to cover. These methodologies could 
potentially decrease the subjectivity of image quality 
control in mammography equipment. Therefore, the 
studies we examined showcase the potential of these 
methodologies.  

However, a critical examination of the literature also 
reveals certain limitations and areas that require 
attention. Moreover, the relatively small number of 
selected articles underscores the scarcity of research 
in this domain, emphasizing the need for expanded 
investigations. Additionally, the absence of clinical 

validation in some of the proposed methods 
underscores the gap between computational 
techniques and their practical clinical application. 

Considering these findings, it is evident that the field 
of computational methods for mammography image 
quality control is in its early stages and requires 
sustained dedication and innovation. Future research 
endeavors must focus on refining existing methods. 
Bridging the gap between computational techniques 
and clinical practice through rigorous validation will be 
pivotal in harnessing the full potential of these 
approaches. 

Ultimately, the pursuit of improved mammography 
image quality control holds profound clinical 
significance. High-quality mammography images are 
fundamental to accurate breast cancer diagnosis and 
early detection, which can significantly impact patient 
outcomes. As we move forward, continued 
collaboration between medical physicists, 
researchers, clinicians, and technologists will be 
essential to advance the state of the art in this critical 
field, ensuring that women receive the highest 
standard of care in breast cancer screening and 
diagnosis. 

References 

1  World Health Organization. Estimated age-standardized 
incidence rates (World) in 2020, worldwide, both sexes, all 
ages. 
2021.https://gco.iarc.fr/today/data/factsheets/cancers/20-
Breast-fact-sheet.pdf (accessed 2 Feb2021). 

2  World Health Organization. Cancer Today. 
2020.https://gco.iarc.fr/today/online-analysis-
pie?v=2020&mode=cancer&mode_population=continent
s&population=900&populations=900&key=total&sex=2&c
ancer=39&type=1&statistic=5&prevalence=0&population
_group=0&ages_group%5B%5D=0&ages_group%5B%5
D=17&nb_items=7&group (accessed 13 Jul2021). 

3  Kretz T, Mueller K-R, Schaeffter T, Elster C. 
Mammography Image Quality Assurance Using Deep 
Learning. IEEE Trans Biomed Eng 2020; 67: 3317–3326. 

4  Serwan E, Matthews D, Davies J, Chau M. 
Mammographic compression practices of force‐ and 
pressure‐standardisation protocol: A scoping review. J 
Med Radiat Sci 2020; 67: 233–242. 

5  World Health Organization. Breast cancer. 
2021.https://www.who.int/news-room/fact-
sheets/detail/breast-cancer (accessed 13 Jul2021). 

6  Sundell V-M, Mäkelä T, Meaney A, Kaasalainen T, 
Savolainen S. Automated daily quality control analysis for 
mammography in a multi-unit imaging  center. Acta Radiol 
2019; 60: 140–148. 

7  Quality Assurance Programme for Digital Mammography. 
INTERNATIONAL ATOMIC ENERGY AGENCY: Vienna, 
2011https://www.iaea.org/publications/8560/quality-
assurance-programme-for-digital-mammography. 

8  Chen C-Y, Pan L-F, Chiang F-T, Yeh D-M, Pan L-K. 
Optimizing quality of digital mammographic imaging using 
Taguchi analysis with an  ACR accreditation phantom. 
Bioengineered 2016; 7: 226–234. 

9  Lee Y, Tsai D-Y, Shinohara N. Computerized quantitative 
evaluation of mammographic accreditation phantom 
images. Med Phys 2010; 37: 6323–6331. 

10  Strack MH, da Silva Bauer M, Mattos LB, Cazella SC, 
Magalhães CR. Jogos digitais aplicados à promoção do 
autocuidado em saúde no escolar: uma revisão 
integrativa. RENOTE 2016; 14. 

11  Alvarez M, Pina DR, Miranda JRA, Duarte SB. Application 
of wavelets to the evaluation of phantom images for 
mammography quality  control. Phys Med Biol 2012; 57: 
7177–7190. 



Revista Brasileira de Física Médica (2024) 18:761 

Associação Brasileira de Física Médica ®   7 

12  Asahara M, Kodera Y. Computerized scheme for 
evaluating mammographic phantom images. Med Phys 
2012; 39: 1609–1617. 

13  Guzmán VC, Darío Benítez Restrepo H, Hurtado ES. 
Natural Scene Statistics of Mammography Accreditation 
Phantom Images. In: 2019 XXII Symposium on Image, 
Signal Processing and Artificial Vision (STSIVA). 2019, pp 
1–5. 

14  Sundell V-M, Mäkelä T, Vitikainen A-M, Kaasalainen T. 
Convolutional neural network-based phantom image 
scoring for mammography quality control. BMC Med 
Imaging 2022; 22: 216. 

15  Ho P-S, Hwang Y-S, Tsai H-Y. Machine learning 
framework for automatic image quality evaluation 
involving a mammographic American College of 
Radiology phantom. Physica Medica 2022; 102: 1–8. 

16  Fausto AMF, Lopes MC, de Sousa MC, Furquim TAC, Mol 
AW, Velasco FG. Optimization of image quality and dose 
in digital mammography. J Digit Imaging 2017; 30: 185–
196. 

  

Contact 

Bernardo Cecchetto 
Universidade Federal de Ciências da Saúde de Porto 
Alegre 
R. Sarmento Leite, 245, Porto Alegre, Brazil 
bernardoc@ufcspa.edu.br 
 


