Radiação Ultravioleta para a Inativação de Microrganismos em Ambientes Públicos

Autores

DOI:

https://doi.org/10.29384/rbfm.2022.v16.19849001605

Palavras-chave:

Radiação Ultravioleta, Inativação de vírus, Inativação de bactérias, descontaminação de ambientes

Resumo

O objetivo deste estudo é implantar e caracterizar radiometricamente um sistema de irradiação de ambientes empregando-se lâmpadas de radiação ultravioleta do tipo C (UV-C) como alternativa para o controle da propagação de microrganismos. A pandemia de Covid-19 (Coronavirus disease 2019) tornou necessário o emprego de medidas sanitárias para conter a propagação do SARS-CoV-2 (Severe Acute Respitatory Syndrome Coronavirus) na população. Dar-se-á destaque, neste trabalho, ao sistema de segurança e à radiometria, visando à inativação dos microrganismos e o limite de exposição do público. Foram instaladas 3 lâmpadas de UV-C de 30 W numa sala de aula de 49 m2. Os resultados mostram valores de densidade de potência superiores a 0,0129 mW cm-2 na sala. O tempo de exposição necessário para a inativação dependerá da resistência intrínseca de cada microrganismo e do percentual de inativação desejado. O sistema proposto é uma estratégia sanitária adicional para conter a dispersão, não apenas do coronavírus SARS-Cov-2, mas também de outros microrganismos patogênicos, demonstrando que a radiação UV-C pode ser utilizada como uma importante ferramenta para controle de epidemias.

Downloads

Não há dados estatísticos.

Referências

Hessling, M., et al., Ultraviolet irradiation doses for coronavirus inactivation - review and analysis of coronavirus photoinactivation studies. Gms Hygiene and Infection Control, 2020. 15.

Hijnen, W.A.M., E.F. Beerendonk, and G.J. Medema, Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: A review. Water Research, 2006. 40(1): p. 3-22.

Hadi, J., et al., Control Measures for SARS-CoV-2: A Review on Light-Based Inactivation of Single-Stranded RNA Viruses. Pathogens, 2020. 9(9).

Horton, L., et al., Spectrum of virucidal activity from ultraviolet to infrared radiation. Photochem Photobiol Sci, 2020.

Wang, Y.X., et al., Unique epidemiological and clinical features of the emerging 2019 novel coronavirus pneumonia (COVID-19) implicate special control measures. Journal of Medical Virology, 2020. 92(6): p. 568-576.

Ren, Y., L. Li, and Y.M. Jia, New Method to Reduce COVID-19 Transmission-The Need for Medical Air Disinfection is Now. Journal of Medical Systems, 2020. 44(7).

Kohli, I., et al., UVC Germicidal Units: Determination of Dose Received and Parameters to be Considered for N95 Respirator Decontamination and Reuse. Photochemistry and Photobiology, 2020, 96: 1083–1087.

Baluja, A., et al., UV light dosage distribution over irregular respirator surfaces. Methods and implications for safety. Journal of Occupational and Environmental Hygiene, 2020. 17(9): p. 390-397.

Buonanno, M., et al., Far-UVC light (222 nm) efficiently and safely inactivates airborne human coronaviruses. Scientific Reports, 2020. 10(1).

dos Santos, T. and de Castro, L.F., Evaluation of a portable Ultraviolet C (UV-C) device for hospital surface decontamination. Photodiagnosis and Photodynamic Therapy, 2021. 33: 102161

Sabino, C.P., Ball, A.R., Baptista, M.S., Dai, T.H., Hamblin, M.R., Ribeiro, M.S., Santos, A.L., Sellera, F.P., Tegos, G.P., and Wainwright, M., Light-based technologies for management of COVID-19 pandemic crisis. Journal of Photochemistry and Photobiology B-Biology, 2020, 212:111999.

Shimabukuro, P.M.S.; Duarte, M.L.; Imoto, A.M.; Atallah, A.N.; Franco, E.S.B.; Peccin, M.S.; Taminato, M., Environmental cleaning to prevent COVID-19 infection. A rapid systematic review. Sao Paulo Medical Journal, 2020. 138(6):505-514

Kowalski, W. 2009: Springer-Verlag Berlin Heidelberg.

Darnell, M.E.R., et al., Inactivation of the coronavirus that induces severe acute respiratory syndrome, SARS-CoV. Journal of Virological Methods, 2004. 121(1): p. 85-91.

Braga, G., et al., Molecular and physiological effects of environmental UV radiation on fungal conidia. Current Genetics, 2015. 61(3): p. 405-425.

Andersen, B.M., et al., Comparison of UVC light and chemicals for disinfection of surfaces in hospital isolation units. Infection Control and Hospital Epidemiology, 2006. 27(7): p. 729-734.

Pavia, M., et al., The effect of ultraviolet-C technology on viral infection incidence in a pediatric long-term care facility. American Journal of Infection Control, 2018. 46(6): p. 720-722.

Welch, D., et al., Far-UVC light: A new tool to control the spread of airborne-mediated microbial diseases. Scientific Reports, 2018. 8.

Buonanno, M., et al., 207-nm UV Light - A Promising Tool for Safe Low-Cost Reduction of Surgical Site Infections. I: In Vitro Studies. Plos One, 2013. 8(10).

Hamzavi, I.H., et al., Ultraviolet germicidal irradiation: Possible method for respirator disinfection to facilitate reuse during the COVID-19 pandemic. Journal of the American Academy of Dermatology, 2020. 82(6): p. 1511-1512.

Sabino, C.P., et al., UV-C (254 nm) lethal doses for SARS-CoV-2. Photodiagnosis Photodyn Ther, 2020: p. 101995.

Fiorillo, L., et al., COVID-19 Surface Persistence: A Recent Data Summary and Its Importance for Medical and Dental Settings. International Journal of Environmental Research and Public Health, 2020. 17(9).

Cadet, J., Harmless Effects of Sterilizing 222-nm far-UV Radiation on Mouse Skin and Eye Tissues. Photochem Photobiol, 2020. 96(4): p. 949-950.

Goldfarb, A.R. and Saidel, L. J. Ultraviolet absorption spectra of proteins. Science 195. 114(2954): p. 156-157.

Douki, T., et al., Bipyrimidine photoproducts rather than oxidative lesions are the main type of DNA damage involved in the genotoxic effect of solar UVA radiation. Biochemistry, 2003. 42(30): p. 9221-9226.

Walker, C.M. and G. Ko, Effect of ultraviolet germicidal irradiation on viral aerosols. Environ Sci Technol, 2007. 41(15): p. 5460-5.

McDevitt, J.J., S.N. Rudnick, and L.J. Radonovich, Aerosol Susceptibility of Influenza Virus to UV-C Light. Applied and Environmental Microbiology, 2012. 78(6): p. 1666-1669.

De Lima, F. and L. Bachmann, Spectroradiometry Applied to Dental Composite Light Curing. Applied Spectroscopy Reviews, 2012. 47(4): p. 256-271.

McKinlay, A.F., et al., Guidelines on limits of exposure to ultraviolet radiation of wavelengths between 180 nm and 400 nm (incoherent optical radiation). Health Physics, 2004. 87(2): p. 171-186.

Reed, N.G., The History of Ultraviolet Germicidal Irradiation for Air Disinfection. Public Health Reports, 2010. 125(1): p. 15-27.

Lytle, C.D. and J.L. Sagripanti, Predicted inactivation of viruses of relevance to biodefense by solar radiation. Journal of Virology, 2005. 79(22): p. 14244-14252.

Buonanno, M., et al., 207-nm UV Light-A Promising Tool for Safe Low-Cost Reduction of Surgical Site Infections. II: In-Vivo Safety Studies. Plos One, 2016. 11(6).

Buonanno, M., et al., Germicidal Efficacy and Mammalian Skin Safety of 222-nm UV Light. Radiation Research, 2017. 187(4): p. 483-491.

Ponnaiya, B., et al., Far-UVC light prevents MRSA infection of superficial wounds in vivo. Plos One, 2018. 13(2).

Yamano, N., et al., Long-term effect of 222-nm ultraviolet lamp on mice highly susceptible to developing ultraviolet-induced skin tumors. Journal of Investigative Dermatology, 2019. 139(5): p. S126-S126.

Fukui, T., et al., Exploratory clinical trial on the safety and bactericidal effect of 222-nm ultraviolet C irradiation in healthy humans. Plos One, 2020. 15(8).

Yamano, N., et al., Long-term Effects of 222-nm ultraviolet radiation C Sterilizing Lamps on Mice Susceptible to Ultraviolet Radiation. Photochemistry and Photobiology, 2020. 96(4): p. 853-862.

Narita, K., et al., Chronic irradiation with 222-nm UVC light induces neither DNA damage nor epidermal lesions in mouse skin, even at high doses. Plos One, 2018. 13(7).

First, M., et al., Fundamental factors affecting upper-room ultraviolet germicidal irradiation - part I. Experimental. J Occup Environ Hyg, 2007. 4(5): p. 321-31.

Rudnick, S.N. and M.W. First, Fundamental factors affecting upper-room ultraviolet germicidal irradiation - Part II. Predicting effectiveness. Journal of Occupational and Environmental Hygiene, 2007. 4(5): p. 352-362.

Gardner, D.W.M. and G. Shama, Modeling UV-induced inactivation of microorganisms on su

Downloads

Publicado

2022-09-11

Como Citar

Bachmann, L., & Ubida Leite Braga, G. (2022). Radiação Ultravioleta para a Inativação de Microrganismos em Ambientes Públicos. Revista Brasileira De Física Médica, 16, 605. https://doi.org/10.29384/rbfm.2022.v16.19849001605

Edição

Seção

Artigo Original