Monte Carlo simulation of air kerma rate constants for different radionuclides
DOI:
https://doi.org/10.29384/rbfm.2024.v18.19849001748Palavras-chave:
air kerma rate constant, nuclear medicine, radiotherapy, radiation protection, radiation shielding, dosimetryResumo
The air kerma rate constant values for different radionuclides are often used in radiation shielding calculations, calibration of instruments, estimating the absorbed dose from brachytherapy sources, etc. Usually, air kerma rate constant values are calculated in a deterministic way. This work evaluates the possibility of air kerma rate constant estimation through Monte Carlo simulations. Ten different radionuclides were considered in this preliminary study, covering low and high-energy gamma spectra. Mean percentage differences of less than 10% relative to the results of reference works were found. Most of our results (C-11, O-15, F-18, Ga-67, Ga-68, I-131, and Tl-201 sources) present less than a 5% relative percentage difference considering the literature results. The air kerma rate constants calculated in this work agree with reference results, thus validating the methodology, the photon spectra database used, and the Monte Carlo simulations with EGSnrc. Future work can extend the calculation of air kerma rate constants for other radionuclides and study the influence of different sources of uncertainty in its results.
Downloads
Referências
Wasserman H, Groenewald W. Air kerma rate constants for radionuclides. Eur J Nucl Med. 1988;14:569-3.
Ninkovic MM, Raicevic JJ, Adrovic F. Air kerma rate constants for gamma emitters used most often in practice. Radiat Prot Dosimetry. 2005;115:247-3.
Smith DS, Stabin MG. Exposure rate constants and lead shielding values for over 1,100 radionuclides. Health Phys. 2012;102:271-21.
Madsen MT, Anderson JA, Halama JR, Kleck J, Simpkin DJ, Votaw JR, et al. AAPM Task Group 108: PET and PET/CT shielding requirements. Med Phys. 2006;33(1):4-12.
Elschot M, de Wit, DC, de Jong HWAM. The influence of self-absorption on PET and PET/CT shielding requirements. Med Phys. 2010;37(6):2999-9.
Soares AD, Paixão L, Facure A. Determination of the dose rate constant through Monte Carlo simulations with voxel phantoms. Med Phys. 2018;45(11):5283-10.
Paixão L, Facure A, Santos, AMM, Santos AM, Grynberg, SE. Monte Carlo study of a new I-125 brachytherapy prototype seed with a ceramic radionuclide carrier and radiographic marker. J Appl Clin Med Phys. 2012;13(3):74-9.
Fonseca TCF, Mendes BM, Lacerda MAS, Silva LAC, Paixão L, Bastos FM, et al. MCMEG: simulations of both PDD and TPR for 6 MV LINAC photon beam using different MC codes. Radiat Phys Chem. 2017;140:386-5.
Paixão L, Chevalier M, Hurtado-Romero AE, Garayoa J. Mean glandular dose to patients from stereotactic breast biopsy procedures. Phys Med Biol. 2018;63(14): 145008-11.
Paixão L, Mendes BM, Fonseca TCF. Validation study of voxel phantom monte carlo simulations with EGSnrc C++ class library. Braz J Radiat Sci. 2019;7:1-15.
Fonseca TCF, Seniwal B, Mendes BM, Bastos FM, Yoriyaz H, Geraldo JM, et al. MCMEG: Intercomparison exercise on prostate radiotherapy dose assessment. Radiat Phys Chem. 2020;167:108295-7.
Paixão L, Oliveira BB, Vieira LA. Backscatter factors calculation for intraoral dental radiology. Biomed Phys Eng Express. 2021;7:045009-9
Pibida L, Minniti R, Lucas L, Seltzer SM. The air-kerma rate constant: application to air-kerma measurements for homeland security. Health Phys. 2008;94(2):126-8.
Paixão L, Fonseca, T. Computational Experiments of Radiation Physics. Independently published; 2023.
RADAR [homepage on the Internet]. Nashville: The radiation dose assessment resource [cited/access 2023 Oct 4]. Available from: https://www.doseinfo-radar.com/.
Kawrakow I, Mainegra-Hing E, Rogers DWO, Tessier F, Walters BRB. The EGSnrc code system: Monte Carlo simulation of electron and photon transport. NRCC Report No. PIRS-701 Report PIRS-701; 2011.
International Commission on Radiological Protection. ICRP Publication 107: Nuclear decay data for dosimetric calculations. New York: Elsevier; 2009.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Lucas Paixão, Telma Cristina Ferreira Fonseca
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
A submissão de artigos originais para a Revista Brasileira de Física Médica implica na transferência, pelos autores, dos direitos de publicação impressa e digital. Os direitos autorais para os artigos publicados são do autor, com direitos do periódico sobre a primeira publicação. Os autores somente poderão utilizar os mesmos resultados em outras publicações indicando claramente este periódico como o meio da publicação original. Em virtude de sermos um periódico de acesso aberto, permite-se o uso gratuito dos artigos em aplicações educacionais, científicas, não comerciais, desde que citada a fonte.
A Revista Brasileira de Física Médica está sob a Licença Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0).