Estimulação magnética transcraniana: uma breve revisão dos princípios e aplicações

Renan Hiroshi Matsuda, Gabriela Pazin Tardelli, Carlos Otávio Guimarães, Victor Hugo Souza, Oswaldo Baffa Filho

Resumo


A estimulação magnética transcraniana é um método não invasivo de estimulação do córtex humano. Conhecida pela sigla TMS, a técnica foi introduzida por Barker et al. em 1985. Seu funcionamento baseia-se na Lei de Faraday, no qual um intenso campo magnético que varia rapidamente é capaz de induzir um campo elétrico na superfície do cérebro, despolarizando os neurônios no córtex cerebral. Devido a sua versatilidade, a TMS é utilizada atualmente tanto no âmbito da pesquisa quanto em aplicações clínicas. Dentre as aplicações clínicas a TMS é utilizada como uma ferramenta diagnóstica e também como uma técnica terapêutica de algumas doenças neurodegenerativas e distúrbios psiquiátricos como a depressão, a doença de Parkinson e o tinnitus. Quanto a ferramenta diagnóstica, destaca-se o mapeamento motor, uma técnica de delimitação da área de representação do músculo alvo em sua superfície cortical, cuja aplicabilidade pode ser em estudos da fisiologia cerebral para avaliar danos ao córtex motor e trato corticoespinhal. Essa revisão tem como objetivo introduzir a física, os elementos básicos, os princípios biológicos e as principais aplicações da estimulação magnética transcraniana.


Palavras-chave


estimulação magnética transcraniana; biomagnetismo; neuroestimulação; neuronavegação

Texto completo:

PDF

Referências


Barker AT, Jalinous R, Freeston IL. Non-Invasive Magnetic Stimulation of Human Motor Cortex. Lancet 1985; 325: 1106–1107.

Wassermann EM, McShane LM, Hallett M, et al. Noninvasive mapping of muscle representations in human motor cortex. Electroencephalogr Clin Neurophysiol Evoked Potentials 1992; 85: 1–8.

Rossini PM, Rossi S. Clinical applications of motor evoked potentials. Electroencephalogr Clin Neurophysiol 1998; 106: 180–94.

Garcia MAC, Souza VH, Vargas CD. Can the Recording of Motor Potentials Evoked by Transcranial Magnetic Stimulation Be Optimized? Front Hum Neurosci 2017; 11: 1–4.

Peres ASC, Souza VH, Catunda JMY, et al. Can somatosensory electrical stimulation relieve spasticity in post-stroke patients? A TMS pilot study. Biomed Tech 2018; 63: 501–506.

Groppa S, Oliviero A, Eisen A, et al. A practical guide to diagnostic transcranial magnetic stimulation: Report of an IFCN committee. Clin Neurophysiol 2012; 123: 858–882.

Fitzgerald PB, Fountain S, Daskalakis ZJ. A comprehensive review of the effects of rTMS on motor cortical excitability and inhibition. Clin Neurophysiol 2006; 117: 2584–2596.

Rossini PM, Burke D, Chen R, et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application: An updated report from an I.F.C.N. Committee. Clin Neurophysiol 2015; 126: 1071–1107.

Groppa S, Oliviero A, Eisen A, et al. A practical guide to diagnostic transcranial magnetic stimulation: Report of an IFCN committee Clinical Neurophysiology. Clin Neurophysiol 2012; 123: 858–882.

RUOHONEN J. Basic Physics and Design of Transcranial Magnetic Stimulation Devices and Coils. In: Magnetic Stimulation in Clinical Neurophysiology. Elsevier, 2005, pp. 17–30.

Peterchev A V., Goetz SM, Westin GG, et al. Pulse width dependence of motor threshold and input-output curve characterized with controllable pulse parameter transcranial magnetic stimulation. Clin Neurophysiol 2013; 124: 1364–1372.

Wassermann EM, McShane LM, Hallett M, et al. Noninvasive mapping of muscle representations in human motor cortex. Electroencephalogr Clin Neurophysiol 1992; 85: 1–8.

Rossini PM, Rossi S. Clinical applications of motor evoked potentials. Electroencephalogr Clin Neurophysiol 1998; 106: 180–94.

Wassermann EM, Zimmermann T. Transcranial magnetic brain stimulation: Therapeutic promises and scientific gaps. Pharmacol Ther 2012; 133: 98–107.

Matthäus L, Schweikard PD-IA. A robotic assistance system for transcranial magnetic stimulation and its application to motor cortex mapping. Inst Robot Cogn Syst 2008; Ph.D.: 174.

Epstein CM, Wassermann EM, Ziemann U. The Oxford handbook of transcranial stimulation. Oxford University Press. November 2012. DOI: 10.1093/oxfordhb/9780198568926.001.0001.

Souza VH, Baffa O, Garcia MAC. Lateralized asymmetries in distribution of muscular evoked responses: An evidence of specialized motor control over an intrinsic hand muscle. Brain Res 2018; 1684: 60–66.

Muller VT, Santos PP dos, Carnaval T, et al. O que é estimulação magnética transcraniana ? Rev Bras Neurol 2013; 49: 20–31.

Klomjai W, Katz R, Lackmy-Vallée A. Basic principles of transcranial magnetic stimulation (TMS) and repetitive TMS (rTMS). Ann Phys Rehabil Med 2015; 58: 208–213.

Benali A, Trippe J, Weiler E, et al. Theta-Burst Transcranial Magnetic Stimulation Alters Cortical Inhibition. J Neurosci 2011; 31: 1193–1203.

Oberman, Lindsay; Pascual-Leone A. Safety of Theta burst stimulation: A systematic review of the literature. 2011; 28: 67–74.

Peres ASC, Souza VHO, Maziero D, et al. Vector magnetic field mapping of a Transcranial Magnetic Stimulation coil using Magnetic Resonance Imaging: in vitro and in vivo experiments. IFMBE Proc 2009; 25: 571–574.

Araújo HA, Ferrareto Iglesio R, Sacchi De Camargo Correia G, et al. Estimulação magnética transcraniana e aplicabilidade clínica: perspectivas na conduta terapêutica neuropsiquiátrica Transcranial magnetic stimulation and clinical applicability: perspectives in neuropsychiatric therapeutics. Rev Med (São Paulo 2011; 90: 3–14.

Brasil-Neto JP, McShane LM, Fuhr P, et al. Topographic mapping of the human motor cortex with magnetic stimulation: factors affecting accuracy and reproducibility. Electroencephalogr Clin Neurophysiol 1992; 85: 9–16.

Souza VH, Vieira TM, Peres ASC, et al. Effect of TMS coil orientation on the spatial distribution of motor evoked potentials in an intrinsic hand muscle. Biomed Eng / Biomed Tech 2018; 63: 635–645.

Souza VH, Matsuda RH, Peres ASC, et al. Development and characterization of the InVesalius Navigator software for navigated transcranial magnetic stimulation. J Neurosci Methods 2018; 309: 109–120.

Julkunen P, Säisänen L, Danner N, et al. Comparison of navigated and non-navigated transcranial magnetic stimulation for motor cortex mapping, motor threshold and motor evoked potentials. Neuroimage 2009; 44: 790–795.

Sollmann N, Goblirsch-Kolb MF, Ille S, et al. Comparison between electric-field-navigated and line-navigated TMS for cortical motor mapping in patients with brain tumors. Acta Neurochir (Wien) 2016; 158: 2277–2289.

Romero JR, Ramirez DM, Aglio LS, et al. Brain mapping using transcranial magnetic stimulation. Neurosurg Clin N Am 2011; 22: 141–52, vii.

Ziemann U. Transcranial magnetic stimulation: Its Current Role in the Evaluation of Patients Post-Stroke. Neurol Rep; 24.

Ettinger GJ, Leventon ME, Grimson WE, et al. Experimentation with a transcranial magnetic stimulation system for functional brain mapping. Med Image Anal 1998; 2: 133–142.

Säisänen L, Pirinen E, Teitti S, et al. Factors influencing cortical silent period: Optimized stimulus location, intensity and muscle contraction. J Neurosci Methods 2008; 169: 231–238.

Conforto AB, Z’Graggen WJ, Kohl AS, et al. Impact of coil position and electrophysiological monitoring on determination of motor thresholds to transcranial magnetic stimulation. Clin Neurophysiol 2004; 115: 812–819.

Boroojerdi B, Foltys H, Krings T, et al. Localization of the motor hand area using transcranial magnetic stimulation and functional magnetic resonance imaging. Clin Neurophysiol 1999; 110: 699–704.

Julkunen P. Methods for estimating cortical motor representation size and location in navigated transcranial magnetic stimulation. J Neurosci Methods 2014; 232: 125–133.

George MS, Wassermann EM, Williams WA, et al. Daily repetitive transcranial magnetic stimulation (rTMS) improves mood in depression. Neuroreport 1995; 6: 1853–1856.

Forster M-T, Limbart M, Seifert V, et al. Test-retest reliability of navigated transcranial magnetic stimulation of the motor cortex. Neurosurgery 2014; 10 Suppl 1: 51-5; discussion 55-6.

Leentjens AFG. Depression in Parkinson’s disease: Conceptual issues and clinical challenges. J Geriatr Psychiatry Neurol 2004; 17: 120–126.

Helmich RC, Siebner HR, Bakker M, et al. Repetitive transcranial magnetic stimulation to improve mood and motor function in Parkinson’s disease. J Neurol Sci 2006; 248: 84–96.

Lefaucheur JP, Brugières P, Guimont F, et al. Navigated rTMS for the treatment of tinnitus: A pilot study with assessment by fMRI and AEPs. Neurophysiol Clin 2012; 42: 95–109.

Hoffman RE, Boutros NN, Hu S, et al. Transcranial magnetic stimulation and auditory hallucinations in schizophrenia. Lancet 2000; 355: 1073–1075.

Silbersweig DA, Stern E, Frith C, et al. A functional neuroanatomy of hallucinations in schizophrenia. Nature 1995; 378: 176–179.

Ilmoniemi RJ, Mäki H, Saari J, et al. The Frequency-Dependent Neuronal Length Constant in Transcranial Magnetic Stimulation. Front Cell Neurosci; 10. 9 August 2016. DOI: 10.3389/fncel.2016.00194.

Hannah R, Rothwell JC. Pulse Duration as Well as Current Direction Determines the Specificity of Transcranial Magnetic Stimulation of Motor Cortex during Contraction. Brain Stimul 2017; 10: 106–115.

Koponen LM, Nieminen JO, Ilmoniemi RJ. Multi-locus transcranial magnetic stimulation—theory and implementation. Brain Stimul 2018; 11: 849–855.




DOI: http://dx.doi.org/10.29384/rbfm.2019.v13.n1.p49-56

Apontamentos

  • Não há apontamentos.


Direitos autorais 2019 Revista Brasileira de Física Médica



Revista Brasileira de Física Médica - RBFM

ISSN: 1984-9001

Este obra está licenciada com uma Licença Creative Commons Atribuição-NãoComercial-SemDerivações 4.0 Internacional.

Desenvolvido por:

Logomarca da Lepidus Tecnologia