Estimulação magnética transcraniana: uma breve revisão dos princípios e aplicações

Renan Hiroshi Matsuda, Gabriela Pazin Tardelli, Carlos Otávio Guimarães, Victor Hugo Souza, Oswaldo Baffa Filho

Resumo


A estimulação magnética transcraniana é um método não invasivo de estimulação do córtex humano. Conhecida pela sigla TMS, do inglês transcranial magnetic stimulation, a técnica foi introduzida por Barker et al. em 1985. Seu funcionamento baseia-se na Lei de Faraday, na qual um intenso campo magnético que varia rapidamente é capaz de induzir um campo elétrico na superfície do cérebro, despolarizando os neurônios no córtex cerebral. Devido à sua versatilidade, a TMS é utilizada atualmente tanto no âmbito da pesquisa quanto em aplicações clínicas. Entre as aplicações clínicas, a TMS é utilizada como ferramenta diagnóstica e também como técnica terapêutica de algumas doenças neurodegenerativas e distúrbios psiquiátricos como a depressão, a doença de Parkinson e o tinnitus. Quanto à ferramenta diagnóstica, destaca-se o mapeamento motor, uma técnica de delimitação da área de representação do músculo-alvo em sua superfície cortical, cuja aplicabilidade pode ser em estudos da fisiologia cerebral para avaliar danos ao córtex motor e trato corticoespinhal. Esta revisão teve como objetivo introduzir a física, os elementos básicos, os princípios biológicos e as principais aplicações da TMS.


Palavras-chave


estimulação magnética transcraniana; biomagnetismo; neuroestimulação; neuronavegação

Texto completo:

PDF

Referências


Barker AT, Jalinous R, Freeston IL. Non-Invasive Magnetic Stimulation of Human Motor Cortex. Lancet 1985; 325: 1106–1107.

Wassermann EM, McShane LM, Hallett M, et al. Noninvasive mapping of muscle representations in human motor cortex. Electroencephalogr Clin Neurophysiol Evoked Potentials 1992; 85: 1–8.

Rossini PM, Rossi S. Clinical applications of motor evoked potentials. Electroencephalogr Clin Neurophysiol 1998; 106: 180–94.

Garcia MAC, Souza VH, Vargas CD. Can the Recording of Motor Potentials Evoked by Transcranial Magnetic Stimulation Be Optimized? Front Hum Neurosci 2017; 11: 1–4.

Peres ASC, Souza VH, Catunda JMY, et al. Can somatosensory electrical stimulation relieve spasticity in post-stroke patients? A TMS pilot study. Biomed Tech 2018; 63: 501–506.

Groppa S, Oliviero A, Eisen A, et al. A practical guide to diagnostic transcranial magnetic stimulation: Report of an IFCN committee. Clin Neurophysiol 2012; 123: 858–882.

Fitzgerald PB, Fountain S, Daskalakis ZJ. A comprehensive review of the effects of rTMS on motor cortical excitability and inhibition. Clin Neurophysiol 2006; 117: 2584–2596.

Rossini PM, Burke D, Chen R, et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application: An updated report from an I.F.C.N. Committee. Clin Neurophysiol 2015; 126: 1071–1107.

Groppa S, Oliviero A, Eisen A, et al. A practical guide to diagnostic transcranial magnetic stimulation: Report of an IFCN committee Clinical Neurophysiology. Clin Neurophysiol 2012; 123: 858–882.

RUOHONEN J. Basic Physics and Design of Transcranial Magnetic Stimulation Devices and Coils. In: Magnetic Stimulation in Clinical Neurophysiology. Elsevier, 2005, pp. 17–30.

Peterchev A V., Goetz SM, Westin GG, et al. Pulse width dependence of motor threshold and input-output curve characterized with controllable pulse parameter transcranial magnetic stimulation. Clin Neurophysiol 2013; 124: 1364–1372.

Wassermann EM, McShane LM, Hallett M, et al. Noninvasive mapping of muscle representations in human motor cortex. Electroencephalogr Clin Neurophysiol 1992; 85: 1–8.

Rossini PM, Rossi S. Clinical applications of motor evoked potentials. Electroencephalogr Clin Neurophysiol 1998; 106: 180–94.

Wassermann EM, Zimmermann T. Transcranial magnetic brain stimulation: Therapeutic promises and scientific gaps. Pharmacol Ther 2012; 133: 98–107.

Matthäus L, Schweikard PD-IA. A robotic assistance system for transcranial magnetic stimulation and its application to motor cortex mapping. Inst Robot Cogn Syst 2008; Ph.D.: 174.

Epstein CM, Wassermann EM, Ziemann U. The Oxford handbook of transcranial stimulation. Oxford University Press. November 2012. DOI: 10.1093/oxfordhb/9780198568926.001.0001.

Souza VH, Baffa O, Garcia MAC. Lateralized asymmetries in distribution of muscular evoked responses: An evidence of specialized motor control over an intrinsic hand muscle. Brain Res 2018; 1684: 60–66.

Muller VT, Santos PP dos, Carnaval T, et al. O que é estimulação magnética transcraniana ? Rev Bras Neurol 2013; 49: 20–31.

Klomjai W, Katz R, Lackmy-Vallée A. Basic principles of transcranial magnetic stimulation (TMS) and repetitive TMS (rTMS). Ann Phys Rehabil Med 2015; 58: 208–213.

Benali A, Trippe J, Weiler E, et al. Theta-Burst Transcranial Magnetic Stimulation Alters Cortical Inhibition. J Neurosci 2011; 31: 1193–1203.

Oberman, Lindsay; Pascual-Leone A. Safety of Theta burst stimulation: A systematic review of the literature. 2011; 28: 67–74.

Peres ASC, Souza VHO, Maziero D, et al. Vector magnetic field mapping of a Transcranial Magnetic Stimulation coil using Magnetic Resonance Imaging: in vitro and in vivo experiments. IFMBE Proc 2009; 25: 571–574.

Araújo HA, Ferrareto Iglesio R, Sacchi De Camargo Correia G, et al. Estimulação magnética transcraniana e aplicabilidade clínica: perspectivas na conduta terapêutica neuropsiquiátrica Transcranial magnetic stimulation and clinical applicability: perspectives in neuropsychiatric therapeutics. Rev Med (São Paulo 2011; 90: 3–14.

Brasil-Neto JP, McShane LM, Fuhr P, et al. Topographic mapping of the human motor cortex with magnetic stimulation: factors affecting accuracy and reproducibility. Electroencephalogr Clin Neurophysiol 1992; 85: 9–16.

Souza VH, Vieira TM, Peres ASC, et al. Effect of TMS coil orientation on the spatial distribution of motor evoked potentials in an intrinsic hand muscle. Biomed Eng / Biomed Tech 2018; 63: 635–645.

Souza VH, Matsuda RH, Peres ASC, et al. Development and characterization of the InVesalius Navigator software for navigated transcranial magnetic stimulation. J Neurosci Methods 2018; 309: 109–120.

Julkunen P, Säisänen L, Danner N, et al. Comparison of navigated and non-navigated transcranial magnetic stimulation for motor cortex mapping, motor threshold and motor evoked potentials. Neuroimage 2009; 44: 790–795.

Sollmann N, Goblirsch-Kolb MF, Ille S, et al. Comparison between electric-field-navigated and line-navigated TMS for cortical motor mapping in patients with brain tumors. Acta Neurochir (Wien) 2016; 158: 2277–2289.

Romero JR, Ramirez DM, Aglio LS, et al. Brain mapping using transcranial magnetic stimulation. Neurosurg Clin N Am 2011; 22: 141–52, vii.

Ziemann U. Transcranial magnetic stimulation: Its Current Role in the Evaluation of Patients Post-Stroke. Neurol Rep; 24.

Ettinger GJ, Leventon ME, Grimson WE, et al. Experimentation with a transcranial magnetic stimulation system for functional brain mapping. Med Image Anal 1998; 2: 133–142.

Säisänen L, Pirinen E, Teitti S, et al. Factors influencing cortical silent period: Optimized stimulus location, intensity and muscle contraction. J Neurosci Methods 2008; 169: 231–238.

Conforto AB, Z’Graggen WJ, Kohl AS, et al. Impact of coil position and electrophysiological monitoring on determination of motor thresholds to transcranial magnetic stimulation. Clin Neurophysiol 2004; 115: 812–819.

Boroojerdi B, Foltys H, Krings T, et al. Localization of the motor hand area using transcranial magnetic stimulation and functional magnetic resonance imaging. Clin Neurophysiol 1999; 110: 699–704.

Julkunen P. Methods for estimating cortical motor representation size and location in navigated transcranial magnetic stimulation. J Neurosci Methods 2014; 232: 125–133.

George MS, Wassermann EM, Williams WA, et al. Daily repetitive transcranial magnetic stimulation (rTMS) improves mood in depression. Neuroreport 1995; 6: 1853–1856.

Forster M-T, Limbart M, Seifert V, et al. Test-retest reliability of navigated transcranial magnetic stimulation of the motor cortex. Neurosurgery 2014; 10 Suppl 1: 51-5; discussion 55-6.

Leentjens AFG. Depression in Parkinson’s disease: Conceptual issues and clinical challenges. J Geriatr Psychiatry Neurol 2004; 17: 120–126.

Helmich RC, Siebner HR, Bakker M, et al. Repetitive transcranial magnetic stimulation to improve mood and motor function in Parkinson’s disease. J Neurol Sci 2006; 248: 84–96.

Lefaucheur JP, Brugières P, Guimont F, et al. Navigated rTMS for the treatment of tinnitus: A pilot study with assessment by fMRI and AEPs. Neurophysiol Clin 2012; 42: 95–109.

Hoffman RE, Boutros NN, Hu S, et al. Transcranial magnetic stimulation and auditory hallucinations in schizophrenia. Lancet 2000; 355: 1073–1075.

Silbersweig DA, Stern E, Frith C, et al. A functional neuroanatomy of hallucinations in schizophrenia. Nature 1995; 378: 176–179.

Ilmoniemi RJ, Mäki H, Saari J, et al. The Frequency-Dependent Neuronal Length Constant in Transcranial Magnetic Stimulation. Front Cell Neurosci; 10. 9 August 2016. DOI: 10.3389/fncel.2016.00194.

Hannah R, Rothwell JC. Pulse Duration as Well as Current Direction Determines the Specificity of Transcranial Magnetic Stimulation of Motor Cortex during Contraction. Brain Stimul 2017; 10: 106–115.

Koponen LM, Nieminen JO, Ilmoniemi RJ. Multi-locus transcranial magnetic stimulation—theory and implementation. Brain Stimul 2018; 11: 849–855.




DOI: http://dx.doi.org/10.29384/rbfm.2019.v13.n1.p49-56

Apontamentos

  • Não há apontamentos.


Direitos autorais 2019 Revista Brasileira de Física Médica



Revista Brasileira de Física Médica - RBFM

ISSN: 1984-9001

Este obra está licenciada com uma Licença Creative Commons Atribuição-NãoComercial-SemDerivações 4.0 Internacional.

Desenvolvido por:

Logomarca da Lepidus Tecnologia