Sistemas de Planejamento em Radioterapia
DOI:
https://doi.org/10.29384/rbfm.2019.v13.n1.p92-98Resumo
Este artigo apresenta uma breve descrição do histórico do desenvolvimento de sistemas de planejamento, seguida da descrição dos atuais sistemas comerciais utilizados nos centros de radioterapia no país e no mundo. É apresentado também um novo sistema de planejamento denominadoA Medical Image-based Graphical platfOrm (AMIGO). Esse software foi desenvolvido em parceria com o Instituto de Pesquisas Energéticas e Nucleares, a Universidade de São Paulo e a Universidade de Maastricht. A primeira versão do software foi desenvolvida para simular tratamentos braquiterápicos por meio de uma interface gráfica com recursos similares aos sistemas de planejamento comerciais. Uma nova versão está sendo desenvolvida para uso em teleterapia, como uma alternativa aos softwares comercias, e permitirá a análise de diversos detalhes do tratamento, além da validação dos cálculos realizados pelos sistemas comerciais.
Downloads
Referências
Lederman, M. The early history of radiotherapy: 1895-1939. Int J Radiat Oncol Biol Phys. 1981;7(5):639-48. https://doi.org/10.1016/0360- 3016(81)90379-5
Rivard MJ, Venselaar JL, Beaulieu L. The evolution of brachytherapy treatment planning. Med Phys. 2009;36(6):2136-53. https://doi.org/10.1118/1.3125136 3. Nath R, Anderson LL, Luxton G, Weaver KA, Williamson JF, Meigooni AS, Dosimetry of interstitial brachytherapy sources: recommendations of the AAPM Radiation Therapy Committee Task Group No. 43. Med Phys.
;22(2):209-34. https://doi.org/10.1118/1.597458
Rivard MJ, et al. Erratum: “Update of AAPM Task Group No. 43 Report: A revised AAPM protocol for brachytherapy dose calculations” [Med. Phys. 2004;31(12):3532-3]: Erratum. Med Phys. 2004;31(3):633-74. https://
doi.org/10.1118/1.1646040
Rivard MJ, Coursey BM, DeWerd LA, Hanson WF, Huq MS, Ibbott GS, et al.
Update of AAPM Task Group No. 43 Report: A revised AAPM protocol for brachytherapy dose calculations. Med Phys. 2004;31(3):633-74. https:// doi.org/10.1118/1.1646040
Rivard MJ, Butler WM, DeWerd LA, Huq MS, Ibbott GS, Meigooni AS, et al. Supplement to the 2004 update of the AAPM Task Group No. 43 Report. Med Phys. 2007;34(6):2187-205. https://doi.org/10.1118/1.2736790
Taylor RE, Rogers DW. EGSnrc Monte Carlo calculated dosimetry parameters for 192Ir and 169Yb brachytherapy sources. Med Phys. 2008;35(11):4933-44. https://doi.org/10.1118/1.2987676
Taylor REP, Rogers DW. An EGSnrc Monte Carlo-calculated database of TG-43 parameters. Med Phys. 2008;35(9):4228-41. https://doi. org/10.1118/1.2965360
Lliso F, Pérez-Calatayud J, Carmona V, Ballester F, Lluch JL, Serrano MA, et al. Fitted dosimetric parameters of high dose-rate 192Ir sources according to the AAPM TG43 formalism. Med Phys. 2001;28(4):654-60. https://doi.org/10.1118/1.1359438
Beaulieu L, Carlsson Tedgren A, Carrier JF, Davis SD, Mourtada F, Rivard MJ, et al. Report of the Task Group 186 on model-based dose calculation methods in brachytherapy beyond the TG-43 formalism: current status and recommendations for clinical implementation. Med Phys. 2012;39(10):6208-36. https://doi.org/10.1118/1.4747264
Gomà C, Almeida IP, Verhaegen F. Revisiting the single-energy CT calibration for proton therapy treatment planning: a critical look at the stoichiometric method. Phys Med Biol. 2018;63(23):235011. https://doi. org/10.1088/1361-6560/aaede5
Fonseca GP, Tedgren ÅC, Reniers B, Nilsson J, Persson M, Yoriyaz H, et al. Dose specification for 192Ir high dose rate brachytherapy in terms of dose- to-water-in-medium and dose-to-medium-in-medium. Phys Med Biol. 2015;60(11):4565-79. https://doi.org/10.1088/0031-9155/60/11/4565
Ma Y, Vijande J, Ballester F, Tedgren ÅC, Granero D, Haworth A, et al. A generic TG-186 shielded applicator for commissioning model-based dose calculation algorithms for high-dose-rate (192) Ir brachytherapy. Med Phys. 2017;44(11):5961-76. https://doi.org/10.1002/mp.12459
Yan C, Combine AG, Bednarz G, Lalonde RJ, Hu B, Dickens K, et al. Clinical implementation and evaluation of the Acuros dose calculation algorithm. J Appl Clin Med Phys. 2017;18(5):195-209. https://doi.org/10.1002/ acm2.12149
Zourari K, Pantelis E, Moutsatsos A, Petrokokkinos L, Karaiskos P, Sakelliou L, et al. Dosimetric accuracy of a deterministic radiation transport based 192Ir brachytherapy treatment planning system. Part I: Single sources and bounded homogeneous geometries. Med Phys. 2010;37(2):649-61. https://doi.org/10.1118/1.3290630
Petrokokkinos L, Zourari K, Pantelis E, Moutsatsos A, Karaiskos P, Sakelliou L, et al. Dosimetric accuracy of a deterministic radiation transport based 192Ir brachytherapy treatment planning system. Part II: Monte Carlo and experimental verification of a multiple source dwell position plan employing a shielded applicator. Med Phys. 2011;38(4):1981-92. https://doi. org/10.1118/1.3567507
Zourari K, Pantelis E, Moutsatsos A, Sakelliou L, Georgiou E, Karaiskos P, et al. Dosimetric accuracy of a deterministic radiation transport based 192Ir brachytherapy treatment planning system. Part III. Comparison to Monte Carlo simulation in voxelized anatomical computational models. Med Phys. 2013;40(1):011712. https://doi.org/10.1118/1.4770275
Veelen B, Ma Y, Beaulieu L. ACE advanced collapsed cone engine. White Paper. 2014:1-16.
Terribilini D, Vitzthum V, Volken W, Frei D, Loessl K, van Veelen B, et al. Performance evaluation of a collapsed cone dose calculation algorithm for HDR Ir-192 of APBI treatments. Med Phys. 2017;44(10):5475-85. https:// doi.org/10.1002/mp.12490
Eason L, Mason J, Bownes P. EP-2239: Evaluation of the Advanced Collapsed Cone Engine (ACE) for Ir-192 brachytherapy treatment planning. Radiother Oncol. 2018;127(Supl. 1):S1237-8.
Han DY, Ma Y, Luc B, Wahl M, Hsu I-CH, Cunha A. Assessment of Volumetric Dose Differences between Calculations Performed with the Advanced Collapsed Cone Engine (ACE) for the Model-Based Dose Calculation Method (TG-186), TG-43, and Monte Carlo. Brachytherapy. 2016;15(Supl. 1):S146-7. et al
Ma Y, Lacroix F, Lavallée MC, Beaulieu L. Validation of the Oncentra Brachy Advanced Collapsed cone Engine for a commercial 192Ir source using heterogeneous geometries. Brachytherapy. 2015;14(6):939-52. https:// doi.org/10.1016/j.brachy.2015.08.003
Petoukhova AL, van Wingerden K, Wiggenraad RG, van de Vaart PJ, van Egmond J, Franken EM, et al. Verification measurements and clinical evaluation of the iPlan RT Monte Carlo dose algorithm for 6 MV photon energy. Phys Med Biol. 2010;55(16):4601-14. https://doi. org/10.1088/0031-9155/55/16/S13
Oguchi H, Obata Y. Commissioning of modulator-based IMRT with XiO treatment planning system. Med Phys. 2009;36(1):261-9. https://doi. org/10.1118/1.2996285
Kohno R, Kitou S, Hirano E, Kameoka S, Goka T, Nishio T, et al. Dosimetric verification in inhomogeneous phantom geometries for the XiO radiotherapy treatment planning system with 6-MV photon beams. Radiol Phys Technol. 2009;2(1):87-96. https://doi.org/10.1007/s12194-008-0049-7
Elekta Monaco Radiation Treatment Planning. Biomed Safety Stand. 2016;46(21):167-8. https://doi.org/10.1097/01. BMSAS.0000508529.39437.cc
Narayanasamy G, Saenz DL, Defoor D, Papanikolaou N, Stathakis S. Dosimetric validation of Monaco treatment planning system on an Elekta VersaHD linear accelerator. J Appl Clin Med Phys. 2017;18(6):123-9. https://doi.org/10.1002/acm2.12188
Clements M, Schupp N, Tattersall M, Brown A, Larson R. Monaco treatment planning system tools and optimization processes. Med Dosimetry. 2018;43(2):106-17. https://doi.org/10.1016/j.meddos.2018.02.005
Bedford JL, Childs PJ, Hansen VN, Mosleh-Shirazi MA, Verhaegen F, Warrington AP. Commissioning and quality assurance of the Pinnacle3 radiotherapy treatment planning system for external beam photons. Brit J Radiol. 2003;76(903):163-76. https://doi.org/10.1259/bjr/42085182
Xia P, Murray E. 3D treatment planning system-Pinnacle system. Med Dosimetry. 2018;43(2):118-28. https://doi.org/10.1016/j. meddos.2018.02.004
Sahoo N, Poenisch F, Zhang X, Li Y, Lii M, Li H, et al. 3D treatment planning system-Varian Eclipse for proton therapy planning. Med Dosimetry. 2018;43(2):184-94. https://doi.org/10.1016/j.meddos.2018.03.006
Duggan D, Ding G, Coffey CW, English M, Clark L. SU-FF-T-60: Accuracy of Varian Eclipse Dynamic Conformal Arc Dose Calculation. Med Phys. 2007;34(6):2414. http://dx.doi.org/10.1118/1.2760709
Bodensteiner D. RayStation: External beam treatment planning system. Med Dosimetry. 2018;43(2):168-76. https://doi.org/10.1016/j. meddos.2018.02.013
Hu Y, Archibald-Heeren B, Byrne M, Wang Y. An assessment on the use of RadCalc to verify Raystation Electron Monte Carlo plans. Australas Phys Eng Sci Med. 2016;39(3):735-45. https://doi.org/10.1007/s13246-016- 0470-x
Toossi MTB, Soleymanifard S, Farhood B, Farkhari A, Knaup C. Evaluation of electron dose calculations accuracy of a treatment planning system in radiotherapy of breast cancer with photon-electron technique. J Cancer Res Ther. 2018;14(Supl.):S1110-6. https://doi.org/10.4103/0973-1482.199457
Tai DT, Oanh LT, Son ND, Loan TTH, Chow JCL. Dosimetric and Monte Carlo verification of jaws-only IMRT plans calculated by the Collapsed Cone Convolution algorithm for head and neck cancers. Rep Pract Oncol Radiother. 2019;24(1):105-14. https://doi.org/10.1016/j.rpor.2018.11.004
Faygelman V, Hunt D, Walker L, Mueller R, Demarco ML, Dilling T, et al. Validation of Pinnacle treatment planning system for use with Novalis delivery unit. J Appl Clin Med Phys. 2010;11(3):3240. https://doi. org/10.1120/jacmp.v11i3.3240
Pokhrel D, Badkul R, Jiang H, Kumar P, Wang F. Technical Note: Dosimetric evaluation of Monte Carlo algorithm in iPlan for stereotactic ablative body radiotherapy (SABR) for lung cancer patients using RTOG 0813 parameters. J Appl Clin Med Phys. 2015;16(1):5058. https://doi.org/10.1120/jacmp. v16i1.5058
Paudel MR, Kim A, Sarfehnia A, Ahmad SB, Beachey DJ, Sahgal A, et al. Experimental evaluation of a GPU-based Monte Carlo dose calculation algorithm in the Monaco treatment planning system. J Appl Clin Med Phys. 2016;17(6):230-41. https://doi.org/10.1120/jacmp.v17i6.6455
Tan YI, Metwaly M, Glegg M, Baggarley S, Elliott A. Evaluation of six TPS algorithms in computing entrance and exit doses. J Appl Clin Med Phys. 2014;15(3):229-40. https://doi.org/10.1120/jacmp.v15i3.4739
Richter A, Exner F, Bratengeier K, Polat B, Flentje M, Weick S. Impact of beam configuration on VMAT plan quality for Pinnacle(3)Auto-Planning for head and neck cases. Radiat Oncol. 2019;14(1):12. https://doi. org/10.1186/s13014-019-1211-6
Speer S, Klein A, Kober L, Weiss A, Yohannes I, Bert C. Automation of radiation treatment planning: Evaluation of head and neck cancer patient plans created by the Pinnacle(3) scripting and Auto-Planning functions. Strahlenther Onkol. 2017;193(8):656-65. https://doi.org/10.1007/ s00066-017-1150-9
Gintz D, Latifi K, Caudell J, Nelms B, Zhang G, Moros E, et al. Initial evaluation of automated treatment planning software. J Appl Clin Med Phys. 2016;17(3):331-46. https://doi.org/10.1120/jacmp.v17i3.6167
Fonseca GP, Reniers B, Landry G, White S, Bellezzo M, Antunes PC, et al. A medical image-based graphical platform — Features, applications and relevance for brachytherapy. Brachytherapy. 2014;13(6):632-9. https:// doi.org/10.1016/j.brachy.2014.07.004
Rogers DWO. Fifty years of Monte Carlo simulations for medical physics. Phys Med Biol. 2006;51(13):R287-R301. https://doi.org/10.1088/0031- 9155/51/13/R17
Chetty IJ, Curran B, Cygler JE, DeMarco JJ, Ezzell G, Faddegon BA, et al. Report of the AAPM Task Group No. 105: Issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning. Med Phys. 2007;34(12):4818-53. https://doi. org/10.1118/1.2795842
Goorley T, James M, Brown F, Bull J, Cox LJ, Durkee J, et al. Features of MCNP6. Ann Nuclear Energy. 2016;87(Parte 2):772-83. https://doi. org/10.1016/j.anucene.2015.02.020
Downloads
Publicado
Como Citar
Edição
Seção
Licença
A submissão de artigos originais para a Revista Brasileira de Física Médica implica na transferência, pelos autores, dos direitos de publicação impressa e digital. Os direitos autorais para os artigos publicados são do autor, com direitos do periódico sobre a primeira publicação. Os autores somente poderão utilizar os mesmos resultados em outras publicações indicando claramente este periódico como o meio da publicação original. Em virtude de sermos um periódico de acesso aberto, permite-se o uso gratuito dos artigos em aplicações educacionais, científicas, não comerciais, desde que citada a fonte.
A Revista Brasileira de Física Médica está sob a Licença Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0).