Anisotropia de fluorescência da sonda AHBA em lipossomas de misturas lipídicas e contendo colesterol
DOI:
https://doi.org/10.29384/rbfm.2024.v18.19849001755Palavras-chave:
fluorescência, biofísica, lipossomas, misturas lipídicas, colesterolResumo
Sondas fluorescentes hidrofóbicas no estudo de membranas modelo têm sido amplamente utilizadas, pois apresentam dinâmicas rotacionais diferentes para diversos ambientes lipídicos, sendo capazes de monitorar a fluidez da bicamada lipídica e os mecanismos dependentes deste fator. Entretanto, a eficácia do uso de sondas fluorescentes anfipáticas deve ser avaliada uma vez que a localização dessas sondas na membrana pode causar uma falha no monitoramento do empacotamento das cadeias graxas. Foram apresentados, neste trabalho, resultados da fluorescência estática da sonda AHBA (2-Amino-N-hexadecilbenzamida) utilizada em estudos do comportamento de fase de vesículas lipídicas (lipossomas) formadas por misturas lipídicas e contendo colesterol. Foram variados, na produção dos lipossomas, o comprimento da cadeia hidrocarbônica dos lipídeos, bem como o tipo de cabeça polar: fosfatidilcolina (PC) e fosfatidilglicerol (PG). Parâmetros como intensidade de fluorescência, deslocamento espectral e anisotropia estática foram obtidos para o AHBA, inserido nas diferentes bicamadas lipídicas. A anisotropia estática se mostrou o parâmetro mais adequado no monitoramento da transição da fase gel para a fase fluida da bicamada, detectando ainda a presença de colesterol no sistema, enquanto os resultados de deslocamento espectral mostraram que o AHBA possui baixa sensibilidade a alterações de polaridade discretas no ambiente ao seu redor.
Downloads
Referências
Bjørnestad VA, Lund R. Pathways of Membrane Solubilization: A Structural Study of Model Lipid Vesicles Exposed to Classical Detergents. Langmuir [Internet]. 2023 Mar 21;39(11):3914–33. Available from: https://pubs.acs.org/doi/10.1021/acs.langmuir.2c03207
Frallicciardi J, Melcr J, Siginou P, Marrink SJ, Poolman B. Membrane thickness, lipid phase and sterol type are determining factors in the permeability of membranes to small solutes. Nat Commun [Internet]. 2022 Mar 25;13(1):1605. Available from: https://www.nature.com/articles/s41467-022-29272-x
Mardešić I, Boban Z, Subczynski WK, Raguz M. Membrane Models and Experiments Suitable for Studies of the Cholesterol Bilayer Domains. Membranes (Basel) [Internet]. 2023 Mar 10;13(3):320. Available from: https://www.mdpi.com/2077-0375/13/3/320
Clifton LA, Campbell RA, Sebastiani F, Campos-Terán J, Gonzalez-Martinez JF, Björklund S, et al. Design and use of model membranes to study biomolecular interactions using complementary surface-sensitive techniques. Adv Colloid Interface Sci [Internet]. 2020 Mar;277:102118. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0001868619304440
Chan Y-HM, Boxer SG. Model membrane systems and their applications. Curr Opin Chem Biol [Internet]. 2007 Dec;11(6):581–7. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1367593107001457
Karaz S, Senses E. Liposomes Under Shear: Structure, Dynamics, and Drug Delivery Applications. Adv NanoBiomed Res [Internet]. 2023 Apr 5;3(4). Available from: https://onlinelibrary.wiley.com/doi/10.1002/anbr.202200101
Nelson DL, Cox MM. Princípios de Bioquímica de Lehninger. Sixth Edit. New York: artmed; 2014.
Sharma A. Liposomes in drug delivery: Progress and limitations. Int J Pharm [Internet]. 1997 Aug 26;154(2):123–40. Available from: https://linkinghub.elsevier.com/retrieve/pii/S037851739700135X
Heimburg T. Thermal Biophysics of Membranes. Thermal Biophysics of Membranes. Weinheim: Wiley; 2007. 1–361 p.
Kučerka N, Nieh M-P, Katsaras J. Fluid phase lipid areas and bilayer thicknesses of commonly used phosphatidylcholines as a function of temperature. Biochim Biophys Acta - Biomembr [Internet]. 2011 Nov;1808(11):2761–71. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0005273611002276
Pencer J, Nieh M-P, Harroun TA, Krueger S, Adams C, Katsaras J. Bilayer thickness and thermal response of dimyristoylphosphatidylcholine unilamellar vesicles containing cholesterol, ergosterol and lanosterol: A small-angle neutron scattering study. Biochim Biophys Acta - Biomembr [Internet]. 2005 Dec;1720(1–2):84–91. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0005273605003421
Katsaras J, Gutberlet T. Lipid Bilayers: Structure and Interactions. Berlin: Springer-Verlag Berlin; 2001.
Davies M, Reyes-Figueroa AD, Gurtovenko AA, Frankel D, Karttunen M. Elucidating lipid conformations in the ripple phase: Machine learning reveals four lipid populations. Biophys J [Internet]. 2023 Jan;122(2):442–50. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0006349522009407
Akabori K, Nagle JF. Structure of the DMPC lipid bilayer ripple phase. Soft Matter [Internet]. 2015;11(5):918–26. Available from: http://xlink.rsc.org/?DOI=C4SM02335H
Riske KA, Barroso RP, Vequi-Suplicy CC, Germano R, Henriques VB, Lamy MT. Lipid bilayer pre-transition as the beginning of the melting process. Biochim Biophys Acta - Biomembr [Internet]. 2009;1788(5):954–63. Available from: http://dx.doi.org/10.1016/j.bbamem.2009.01.007
Marquezin CA, Lamy MT, de Souza ES. Molecular collisions or resonance energy transfer in lipid vesicles? A methodology to tackle this question. J Mol Liq [Internet]. 2021 Nov;341:117405. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0167732221021292
Sánchez JM, del V. Turina A, Perillo MA. Spectroscopic probing of ortho-nitrophenol localization in phospholipid bilayers. J Photochem Photobiol B Biol [Internet]. 2007 Nov;89(1):56–62. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1011134407001261
Nagle JF, Tristram-Nagle S. Structure of lipid bilayers. Biochimica et Biophysica Acta - Reviews on Biomembranes. 2000.
Marsh D. Electron spin resonance: spin labels. In: Grell E, editor. Molecular biology biochemistry and biophysics: membrane spectroscopy. New York: Springer Berlin Heidelberg; 1981. p. 51–142.
Grell E, editor. Membrane Spectroscopy [Internet]. Berlin, Heidelberg: Springer Berlin Heidelberg; 1981. (Molecular Biology Biochemistry and Biophysics; vol. 31). Available from: http://link.springer.com/10.1007/978-3-642-81537-9
Singh MK, Khan MF, Shweta H, Sen S. Probe-location dependent resonance energy transfer at lipid/water interfaces: comparison between the gel- and fluid-phase of lipid bilayer. Phys Chem Chem Phys [Internet]. 2017;19(38):25870–85. Available from: http://xlink.rsc.org/?DOI=C7CP03108D
Amaro M, Filipe HAL, Prates Ramalho JP, Hof M, Loura LMS. Fluorescence of nitrobenzoxadiazole (NBD)-labeled lipids in model membranes is connected not to lipid mobility but to probe location. Phys Chem Chem Phys [Internet]. 2016;18(10):7042–54. Available from: http://xlink.rsc.org/?DOI=C5CP05238F
Bagatolli LA, Ipsen JH, Simonsen AC, Mouritsen OG. An outlook on organization of lipids in membranes: Searching for a realistic connection with the organization of biological membranes. Prog Lipid Res. 2010;49(4):378–89.
Marquezin CA, Ito AS, de Souza ES. Organization and dynamics of NBD-labeled lipids in lipid bilayer analyzed by FRET using the small membrane fluorescent probe AHBA as donor. Biochim Biophys Acta - Biomembr [Internet]. 2019;1861(10):182995. Available from: https://doi.org/10.1016/j.bbamem.2019.05.017
Marquezin CA, de Oliveira CMA, Vandresen F, Duarte EL, Lamy MT, Vequi-Suplicy CC. The interaction of a thiosemicarbazone derived from R - (+) - limonene with lipid membranes. Chem Phys Lipids [Internet]. 2021;234(September 2020):105018. Available from: https://doi.org/10.1016/j.chemphyslip.2020.105018
Tretiakova DS, Alekseeva AS, Galimzyanov TR, Boldyrev AM, Chernyadyev AY, Ermakov YA, et al. Lateral stress profile and fluorescent lipid probes. FRET pair of probes that introduces minimal distortions into lipid packing. Biochim Biophys Acta - Biomembr [Internet]. 2018 Nov;1860(11):2337–47. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0005273618301627
Loura L. Lateral Distribution of NBD-PC Fluorescent Lipid Analogs in Membranes Probed by Molecular Dynamics-Assisted Analysis of Förster Resonance Energy Transfer (FRET) and Fluorescence Quenching. Int J Mol Sci [Internet]. 2012 Nov 8;13(12):14545–64. Available from: http://www.mdpi.com/1422-0067/13/11/14545
Alonso L, Mendanha SA, Marquezin CA, Berardi M, Ito AS, Acuña AU, et al. Interaction of miltefosine with intercellular membranes of stratum corneum and biomimetic lipid vesicles. Int J Pharm. 2012;434(1–2):391–8.
Mendanha SA, Marquezin CA, Ito AS, Alonso A. Effects of nerolidol and limonene on stratum corneum membranes: A probe EPR and fluorescence spectroscopy study. Int J Pharm [Internet]. 2017 Oct;532(1):547–54. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0378517317309122
Lakowicz JR. Principles of fluorescence spectroscopy, 3rd Edition, Joseph R. Lakowicz, editor. Principles of fluorescence spectroscopy, Springer, New York, USA, 3rd edn, 2006. 2006. 954 p.
Leung SSW, Brewer J, Bagatolli LA, Thewalt JL. Measuring molecular order for lipid membrane phase studies: Linear relationship between Laurdan generalized polarization and deuterium NMR order parameter. Biochim Biophys Acta - Biomembr [Internet]. 2019 Dec;1861(12):183053. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0005273619301993
Vequi-Suplicy CC, Lamy MT, Marquezin C a. The new fluorescent membrane probe Ahba: A comparative study with the largely used Laurdan. J Fluoresc. 2013;23(3):479–86.
Lúcio AD, Vequi-Suplicy CC, Fernandez RM, Lamy MT. Laurdan Spectrum Decomposition as a Tool for the Analysis of Surface Bilayer Structure and Polarity: a Study with DMPG, Peptides and Cholesterol. J Fluoresc [Internet]. 2010 Mar 17;20(2):473–82. Available from: http://link.springer.com/10.1007/s10895-009-0569-5
Poojari C, Wilkosz N, Lira RB, Dimova R, Jurkiewicz P, Petka R, et al. Behavior of the DPH fluorescence probe in membranes perturbed by drugs. Chem Phys Lipids [Internet]. 2019 Sep;223:104784. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0009308419300258
Lakowicz JR, Prendergast FG. Quantitation of hindered rotations of diphenylhexatriene in lipid bilayers by differential polarized phase fluorometry. Science (80- ). 1978;200(4348).
Marquezin CA, Hirata IY, Juliano L, Ito AS. Spectroscopic characterization of 2-amino-N-hexadecyl-benzamide (AHBA), a new fluorescence probe for membranes. Biophys Chem [Internet]. 2006 Nov;124(2):125–33. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0301462206002055
Hope MJ, Bally MB, Webb G, Cullis PR. Production of large unilamellar vesicles by a rapid extrusion procedure. Characterization of size distribution, trapped volume and ability to maintain a membrane potential. BBA - Biomembr. 1985;812(1):55–65.
Kunding AH, Mortensen MW, Christensen SM, Stamou D. A Fluorescence-Based Technique to Construct Size Distributions from Single-Object Measurements: Application to the Extrusion of Lipid Vesicles. Biophys J [Internet]. 2008 Aug;95(3):1176–88. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0006349508701887
McIntyre JC, Sleight RG. Fluorescence assay for phospholipid membrane asymmetry. Biochemistry [Internet]. 1991 Dec 1;30(51):11819–27. Available from: https://pubs.acs.org/doi/abs/10.1021/bi00115a012
Enoki TA, Henriques VB, Lamy MT. Light scattering on the structural characterization of DMPG vesicles along the bilayer anomalous phase transition. Chem Phys Lipids [Internet]. 2012 Dec;165(8):826–37. Available from: https://linkinghub.elsevier.com/retrieve/pii/S000930841200120X
Huang C, Li S. Calorimetric and molecular mechanics studies of the thermotropic phase behavior of membrane phospholipids. Biochim Biophys Acta - Rev Biomembr [Internet]. 1999 Nov;1422(3):273–307. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0005273699000991
Kaasgaard T, Leidy C, Crowe JH, Mouritsen OG, Jørgensen K. Temperature-Controlled Structure and Kinetics of Ripple Phases in One- and Two-Component Supported Lipid Bilayers. Biophys J [Internet]. 2003 Jul;85(1):350–60. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0006349503744798
Bagatolli LA, Gratton E. A Correlation between Lipid Domain Shape and Binary Phospholipid Mixture Composition in Free Standing Bilayers: A Two-Photon Fluorescence Microscopy Study. Biophys J [Internet]. 2000 Jul;79(1):434–47. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0006349500763053
Seeger HM, Fidorra M, Heimburg T. Domain Size and Fluctuations at Domain Interfaces in Lipid Mixtures. Macromol Symp [Internet]. 2005 Jan 10;219(1):85–96. Available from: https://onlinelibrary.wiley.com/doi/10.1002/masy.200550109
Almeida PFF. Thermodynamics of lipid interactions in complex bilayers. Biochim Biophys Acta - Biomembr [Internet]. 2009 Jan;1788(1):72–85. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0005273608002459
Jacobson K, Papahadjopoulos D. Phase transitions and phase separations in phospholipid membranes induced by changes in temperature, pH, and concentration of bivalent cations. Biochemistry [Internet]. 1975 Jan 14;14(1):152–61. Available from: https://pubs.acs.org/doi/abs/10.1021/bi00672a026
Marsh D. Handbook of lipids bilayers. Boca Raton: CRC; 1990.
Andrich MP, Vanderkooi JM. Temperature dependence of 1,6-diphenyl-1,3,5-hexatriene fluorescence in phospholipid artificial membranes. Biochemistry [Internet]. 1976 Mar 1;15(6):1257–61. Available from: https://pubs.acs.org/doi/abs/10.1021/bi00651a013
Lee AG. Lipid phase transitions and phase diagrams II. Mixtures involving lipids. Biochim Biophys Acta - Rev Biomembr [Internet]. 1977 Nov;472(3–4):285–344. Available from: https://linkinghub.elsevier.com/retrieve/pii/0304415777900016
POGHOSYAN AH, GHARABEKYAN HH, SHAHINYAN AA. MOLECULAR DYNAMICS SIMULATIONS OF DMPC/DPPC MIXED BILAYERS. Int J Mod Phys C [Internet]. 2007 Jan 21;18(01):73–89. Available from: https://www.worldscientific.com/doi/abs/10.1142/S0129183107010267
Joana Isabel Guerreiro Cristo. Análise por anisotropia de fluorescência em estado estacionário, de misturas lipídicas canónicas envolvidas na heterogeneidade de membranas modelo [Internet]. UNIVERSIDADE DO ALGARVE; 2012. Available from: http://hdl.handle.net/10400.1/3479
Hubbell WL, McConnell HM. Molecular motion in spin-labeled phospholipids and membranes. J Am Chem Soc. 1971;93(2):314–26.
Rozenfeld JHK, Duarte EL, Oliveira TR, Lamy MT. Structural insights on biologically relevant cationic membranes by ESR spectroscopy. Biophys Rev. 2017;9(5):633–47.
Bhattacharya S, Haldar S. Interactions between cholesterol and lipids in bilayer membranes. Role of lipid headgroup and hydrocarbon chain–backbone linkage. Biochim Biophys Acta - Biomembr [Internet]. 2000 Jul;1467(1):39–53. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0005273600001966
Finean JB. Interaction between cholesterol and phospholipid in hydrated bilayers. Chem Phys Lipids [Internet]. 1990 Jun;54(3–4):147–56. Available from: https://linkinghub.elsevier.com/retrieve/pii/000930849090008F
Ma Y, Benda A, Kwiatek J, Owen DM, Gaus K. Time-Resolved Laurdan Fluorescence Reveals Insights into Membrane Viscosity and Hydration Levels. Biophys J [Internet]. 2018 Oct;115(8):1498–508. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0006349518310191
De Vequi-Suplicy CC, Benatti CR, Lamy MT. Laurdan in Fluid Bilayers: Position and Structural Sensitivity. J Fluoresc [Internet]. 2006 May 9;16(3):431–9. Available from: http://link.springer.com/10.1007/s10895-005-0059-3
Malacrida L, Gratton E. LAURDAN fluorescence and phasor plots reveal the effects of a H2O2 bolus in NIH-3T3 fibroblast membranes dynamics and hydration. Free Radic Biol Med. 2018;128.
Pérez HA, Disalvo A, Frías M de los Á. Effect of cholesterol on the surface polarity and hydration of lipid interphases as measured by Laurdan fluorescence: New insights. Colloids Surfaces B Biointerfaces [Internet]. 2019 Jun;178:346–51. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0927776519301638
Subczynski WK, Wisniewska A, Hyde JS, Kusumi A. Three-Dimensional Dynamic Structure of the Liquid-Ordered Domain in Lipid Membranes as Examined by Pulse-EPR Oxygen Probing. Biophys J [Internet]. 2007 Mar;92(5):1573–84. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0006349507709657
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Cássia Alessandra Marquezin, Bruna Eduarda Darolt Mucke
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
A submissão de artigos originais para a Revista Brasileira de Física Médica implica na transferência, pelos autores, dos direitos de publicação impressa e digital. Os direitos autorais para os artigos publicados são do autor, com direitos do periódico sobre a primeira publicação. Os autores somente poderão utilizar os mesmos resultados em outras publicações indicando claramente este periódico como o meio da publicação original. Em virtude de sermos um periódico de acesso aberto, permite-se o uso gratuito dos artigos em aplicações educacionais, científicas, não comerciais, desde que citada a fonte.
A Revista Brasileira de Física Médica está sob a Licença Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0).