Segmentação de imagens PET para definição de volumes de tratamento em planejamento radioterápico

Authors

  • Alex Holanda de Oliveira Nova Esperança College, Brazil
  • Isabelle Lacerda Northeast Regional Center of Nuclear Science, National Nuclear Energy Commission, Recife, Brazil
  • Jefersson Araújo Nova Esperança College, Brazil

DOI:

https://doi.org/10.29384/rbfm.2023.v17.19849001606

Keywords:

Cancer, Radiotherapy, Image processing, Positron Emission Tomography

Abstract

According to the statistical projections of the Brazilian National Cancer Institute, the estimated incidence of cancer in Brazil is approximately 626,030 new cases in each year of 2020-2022. One of the main forms of cancer treatment is radiation therapy. The most suitable way to irradiate the tumor volume is determined on the radiotherapy planning, while minimizing damage to surrounding healthy tissue. The definition of the target volume is usually performed by manual delineation directly on a radiological image of the patient by the radiotherapist. This leads to a higher level of uncertainty since this segmentation method is subjective. This work aims to collaborate in the identification of more adequate segmentation methods for defining volumes in PET images. Segmentation methods were performed in IEC/NEMA phantom images using the ImageJ software. The evaluated methods were threshold, level sets and k-means clustering. The method that showed the most satisfactory results was the k-means clustering, being the automatic method recommended for segmentation of PET images. However, more research is needed to develop techniques that define more precisely the target volume in radiotherapy planning, mainly due to the high noise level and low spatial resolution of PET images.

Downloads

Download data is not yet available.

Author Biography

Isabelle Lacerda, Northeast Regional Center of Nuclear Science, National Nuclear Energy Commission, Recife, Brazil

Graduação em Tecnologia em Radiologia pelo Instituto Federal de Pernambuco - IFPE (2010), Mestrado (2013) e Doutorado (2017) pelo Programa de Pós-graduação em Tecnologias Energéticas e Nucleares - UFPE. Atualmente é pesquisadora colaboradora da Divisão de Produção de Radiofármacos do Centro Regional de Ciências Nucleares do Nordeste (CRCN-NE/CNEN). Tem experiência na área de Engenharia Nuclear, com ênfase em Dosimetria e Instrumentação Nuclear, atuando, principalmente, nos seguintes temas: monitoração dosimétrica de indivíduos ocupacionalmente expostos e de pacientes submetidos a exames de medicina nuclear e desenvolvimento de modelos computacionais de exposição utilizando fantomas antropomórficos e métodos Monte Carlo.

References

INCA. Estimativa 2023: Incidência de câncer no Brasil. Rio de Janeiro: INCA; 2023. [Acesso em 23/02/2023] Disponível em: www.gov.br/inca/pt-br/assuntos/cancer/numeros/estimativa

Cardoso MJD. Estudo dosimétrico para implementação da técnica radioterapêutica Volumetric Modulated Arc Therapy (VMAT) [dissertação]. Lisboa: Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa; 2011.

PERES L. Princípios físicos e técnicos em radioterapia. 1st ed. Rio de Janeiro: Rubio; 2018. 240 p.

Michelon E, Colenci B, Paula V. Diferenças entre os exames de tomografia computadorizada realizados para fins diagnósticos e para planejamento radioterápico. Disciplinarum Scientia: Série: Ciências Naturais e Tecnológicas. 2005;13(1).

Burnet NG, Thomas SJ, Burton KE, Jefferies SJ. Defining the tumour and target volumes for radiotherapy. Cancer Imaging. 2004; 21.

Faria SL, Lisbona R, Stern J, Devic S, Souhami L, Freeman CR. O uso de FDG-PET/TC scan no planejamento da radioterapia em câncer do pulmão não de pequenas células. Radiol Bras. 2007;40(5):345–8.

Arabi H, Zaidi H. Improvement of image quality in PET using post-reconstruction hybrid spatial-frequency domain filtering. Physics in Medicine & Biology, 63, 2018.

Foster B, Bagci U, Mansoor A, Xu Z, Mollura DJ. A review on segmentation of positron emission tomography images. Computers in Biology and Medicine, 50, 2014.

Vosoughi H, Geramifar P. PET NEMA IQ phantom dataset for quantification study, Mendeley Data, V2, 2021. DOI: 10.17632/zbz4rcjywc.2.

Abràmoff M. D., Magalhães P. J., Ram S. J. Image Processing with ImageJ. Biophotonics International, 11, 7, 2004.

Cabral P. Erros e Incertezas em Medições. 2004. Disponível em: http://www.peb.ufrj.br/cursos/ErrosIncertezas.pdf [Acesso em 23/02/2023]

Ali I, Rehman AU, Khan DM, Khan Z, Shafiq M, Choi JG. Model Selection Using K-Means Clustering Algorithm for the Symmetrical Segmentation of Remote Sensing Datasets. Symmetry, 14, 2022.

Jardim S, António J, Mora C. Graphical Image Region Extraction with K-Means Clustering and Watershed. Journal of Imaging, 8, 2022.

Cherry P, Duxbury AM. Practical radiotherapy: physics and equipment. 3th ed. Inglaterra: Wiley-Blackwell; 2019.

ICRU – International Commission on Radiation Units and Measurements. Determination of absorbed dose in a patient irradiated by beams of x or gamma rays in radiotherapy procedures: ICRU Report 24. Bethesda, 1976.

Thwaites D. Accuracy required and achievable in radiotherapy dosimetry: have modern technology and techniques changed our views? J. Phys: Conference Series. [cited/acesso 2020 Dec 12]. Available from: https://iopscience.iop.org/article/10.1088/1742-6596/444/1/012006

Caravatta L, Macchia G, Mattiucci GC, Sainato A, Cernusco NL, Mantello G, et al. Inter-observer variability of clinical target volume delineation in radiotherapy treatment of pancreatic cancer: a multi-institutional contouring experience. Radiat Oncol. 2014;9: 198.

Drever, L.; Roa, W.; McEwan, A.; Robinson, D. Iterative threshold segmentation for PET target volume delineation. Medical Physics, 34, 4, 2007.

Boellaard R, Krak NC, Hoekstra OS, Lammertsma AA. Effects of noise, image resolution, and ROI definition on the accuracy of standard uptake values: a simulation study. J Nucl Med. 2004(45).

Lee JA. Segmentation of positron emission tomography images: some recommendations for target delineation in radiation oncology. Radiother and Oncol. 2010(96).

Sattler B, Lee JA, Lonsdale M, Coche E. PET/CT (and CT) instrumentation, image reconstruction and data transfer for radiotherapy planning. Radiother and Oncol., 96, 2010.

Schaefer, A.; Kremp, S.; Hellwig, D.; Rübe, C.; Kirsch, C.-M.; Nestle, U. A contrast-oriented algorithm for FDG-PET-based delineation of tumour volumes for the radiotherapy of lung cancer: derivation from phantom measurements and validation in patient data. European Journal of Nuclear Medicine and Molecular Imaging, 35, 2008.

Pfaehler, E.;, Burggraaff, C.; Kramer, G.; Zijlstra, J.; Hoekstra, O. S.; Jalving, M.; Noordzij, W.; Brouwers, A. H.; Stevenson, M. G.; Jong, J.; Boellaard, R. PET segmentation of bulky tumors: Strategies and workflows to improve inter-observer variability. PLoS ONE, 15, 3, 2020.

Amira A, Chandrasekaran S, Montgomery DWG, Uzun IS. A segmentation concept for positron emission tomography imaging using multiresolution analysis. Neurocomputing, 71, 2008.

Soret M, Bacharach SL, Buvat I. Partial-Volume Effect in PET Tumor Imaging. The Journal of Nuclear Medicine, 48, 6, 2007.

ICRP. Radiation Dose to Patients from Radiopharmaceuticals - Addendum 3 to ICRP Publication 53. ICRP Publication 106. Oxford, 2008.

Koppenol WH, Bounds PL, Dang CV. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer. 2011;11:325–337.

Published

2023-06-02

How to Cite

Holanda de Oliveira, A., Lacerda, I., & Araújo, J. (2023). Segmentação de imagens PET para definição de volumes de tratamento em planejamento radioterápico. Brazilian Journal of Medical Physics, 17, 606. https://doi.org/10.29384/rbfm.2023.v17.19849001606

Issue

Section

Artigo Original