Detection of Bone Fractures in Phantoms by Impedance Spectroscopy
DOI:
https://doi.org/10.29384/rbfm.2021.v15.19849001614Keywords:
Electrical impedance spectroscopy; Biological phantom; Bone fractures.Abstract
Most imaging diagnostic techniques for the detection of bone fractures uses equipment that emits radiation, which can be harmful to human health, even in small doses. Undoubtedly, studies are needed and new techniques are seeking towards the reduction of such x-ray exposures. The aim of this article is to develop a 3D biological phantom in order to investigate the sensitivity of detecting fractured bones by using electrical impedance spectroscopy. Also, it is investigated the effects of different electrode distance to the sensitivity of the measuring technique. Measurements were performed by a commercial Impedance Spectroscope from Zurich Instruments (model HF2IS) in the frequency range from 1 kHz to 1 MHz. Four circular electrodes (model MELCTEC) were used to connect the phantom to the HF2IS. The HF2IS was firstly calibrated by measuring a 100 Ω resistor and 1% accuracy. Both magnitude and phase calibrated vectors were calculated and then used to adjust the bone-phantom data. The results showed that the values of modulus and phase for the pure simulator and with fractured bone are very close while for the whole bone they present notable variation, mainly in frequencies above 100 kHz. It was observed that the distance between electrodes causes a small effect in the impedance modulus, whereas the phase changes are more significant at high frequency. It was also observed that impedance phase is more sensitive to electrode geometry with and without fractured bones. This might be a useful tool for don´t imaging fractures of human bones as a low cost, non-invasive and non-harmful approach human health.
Downloads
References
2. Williams PA, Saha S. The electrical and dielectric properties of human bone tissue and their relationship with density and bone mineral content. Ann Biomed Eng. 1996;24(2):222–33.
3. Cral WG, Silveira MQ, Tucunduva RMA, Abujamra RHH, Queluz D de P. Utilização de Índices Radiomorfométricos em Exames de Imagem. Rev da Fac Odontol [Internet]. 2017 [cited 2018 Nov 22];22(1):91–5. Available from: http://seer.upf.br/index.php/rfo/article/view/6732/4323
4. Lab Tests Online. Cálcio [Internet]. Lab Tests Online. 2007 [cited 2018 Nov 22]. Available from: https://labtestsonline.org.br/tests/calcio
5. CDAV. Densitometria Óssea [Internet]. Centro de Diagnóstico Água Verde - CDAV. 2017 [cited 2018 Nov 22]. Available from: http://cedav.com.br/exames-densitometria/
6. Herrero S, Pico Y. Can a healthy life prevent us from post-menopausal osteoporosis? Myths and truths. PharmaNutrition [Internet]. 2015 Apr 1 [cited 2018 Nov 21];4(2):45–53. Available from: https://www.sciencedirect.com/science/article/pii/S2213434415300438
7. Brunelli AS, Baptista CMS, Dominoni RL, Vargas DM. Diferenças na frequência de osteoporose entre Densitometrias Ósseas (DXA) realizadas no Sistema Único De Saúde (SUS) e na Saúde Suplementar (SS). Arq Catarinenses Med [Internet]. 2018 Mar 2 [cited 2018 Nov 21];47(1):47–58. Available from: http://www.acm.org.br/acm/seer/index.php/arquivos/article/view/229/225
8. Santiago EMD, Vieira FS, Nunes A. Osteoporose : estudo sobre o gasto com medicamentos sob a perspectiva do paciente no Brasil . Trabalho de Conclusão de Curso para obtenção de título de Especialista em Economia da Saúde , 2017 , Universidade Federal de Goiás . Rev Eletrônica Gestão Saúde [Internet]. 2018 [cited 2018 Nov 21];09(02):247–60. Available from: http://periodicos.unb.br/index.php/rgs/article/viewFile/29547/pdf
9. Hobbs JB, Goldstein N, Lind KE, Elder D, Dodd GD, Borgstede JP. Physician Knowledge of Radiation Exposure and Risk in Medical Imaging. J Am Coll Radiol [Internet]. 2018 Jan 1 [cited 2018 Nov 22];15(1):34–43. Available from: https://www.sciencedirect.com/science/article/pii/S154614401731089X
10. Amorim DAF. Desenvolvimento de um Fantoma Cerebral para Ressonância Magnética. Instituto Superior de Engenharia do Porto; 2013.
11. Lima VJ de M. Desenvolvimento de fantomas mesh infantis, morfologicamente consistentes com a anatomia humana, para uso em dosimetria. [Recife]: Univerisdade Federal de Pernambuco; 2011.
12. Cruz GB. Construção de simulador antropomórfico de próstata 3D para uso em radioterapia. Universidade de Brasília; 2018.
13. Akhlaghi P, Miri Hakimabad H, Rafat Motavalli L. Evaluation of dose conversion coefficients for an eight-year-old Iranian male phantom undergoing computed tomography. Radiat Environ Biophys. 2015 Jun 17;54(4):465–74.
14. Zankl M, Veit R, Williams G, Schneider K, Fendel H, Petoussi N, et al. The construction of computer tomographic phantoms and their application in radiology and radiation protection. Radiat Environ Biophys. 1988 Jun;27(2):153–64.
15. Caon M, Bibbo G, Pattison J. An EGS4-ready tomographic computational model of a 14-year-old female torso for calculating organ doses from CT examinations. Phys Med Biol. 1999;44(9):2213–25.
16. Lee C, Lee C, Staton RJ, Hintenlang DE, Arreola MM, Williams JL, et al. Organ and effective doses in pediatric patients undergoing helical multislice computed tomography examination. Med Phys [Internet]. 2007 Apr 26 [cited 2019 Nov 25];34(5):1858–73. Available from: http://doi.wiley.com/10.1118/1.2723885
17. Donovan EM, James H, Bonora M, Yarnold JR, Evans PM. Second cancer incidence risk estimates using BEIR VII models for standard and complex external beam radiotherapy for early breast cancer. Med Phys [Internet]. 2012 Sep 11 [cited 2019 Nov 25];39(10):5814–24. Available from: http://doi.wiley.com/10.1118/1.4748332
18. Feragalli B, Rampado O, Abate C, Macrì M, Festa F, Stromei F, et al. Cone beam computed tomography for dental and maxillofacial imaging: technique improvement and low-dose protocols. Radiol Medica. 2017 Aug 1;122(8):581–8.
19. Sihono DSK, Vogel L, Weiß C, Thölking J, Wenz F, Lohr F, et al. Ein 4D-Ultraschall-Tracking-System für die externe Radiotherapie bei Oberbauchläsionen unter Atemanhalt. Strahlentherapie und Onkol. 2017 Mar 1;193(3):213–20.
20. Gao Y, Mahmood U, Liu T, Quinn B, Gollub MJ, Xu XG, et al. Patient-Specific Organ and Effective Dose Estimates in Adult Oncologic CT. Am J Roentgenol. 2019 Aug 15;1–9.
21. Lee L-W, Liao Y-S, Lu H-K, Hsieh K-C, Chi C-C. Performance of Bioelectrical Impedance Analysis in the Estimation of Bone Mineral Content in Healthy Children Aged 6–12 Years. J Clin Densitom [Internet]. 2019 Mar 15 [cited 2019 Jul 2]; Available from: https://www.sciencedirect.com/science/article/pii/S1094695018302671?via%3Dihub
22. Wesolowska P, Georg D, Lechner W, Kazantsev P, Bokulic T, Tedgren AC, et al. Testing the methodology for a dosimetric end-to-end audit of IMRT/VMAT: results of IAEA multicentre and national studies. Acta Oncol (Madr) [Internet]. 2019 Dec 2 [cited 2019 Nov 25];58(12):1731–9. Available from: https://www.tandfonline.com/doi/full/10.1080/0284186X.2019.1648859
23. Liao YS, Li HC, Lu HK, Lai CL, Wang YS, Hsieh KC. Comparison of bioelectrical impedance analysis and dual energy X-ray absorptiometry for total and segmental bone mineral content with a three-compartment model. Int J Environ Res Public Health. 2020 Apr 1;17(7).
24. Zhou Y, Höglund P, Clyne N. Comparison of DEXA and Bioimpedance for Body Composition Measurements in Nondialysis Patients With CKD. J Ren Nutr. 2019 Jan 1;29(1):33–8.
25. Crispilho SF, Bezerra KS, Dalboni MA, Pereira RMR, Elias RM, Moyses RMA. Bioimpedance Underestimates Bone Mineral Content in Association With High Levels of Phosphate [Internet]. Vol. 30, Journal of Renal Nutrition. W.B. Saunders; 2020 [cited 2020 Jun 26]. p. 85–6. Available from: http://www.jrnjournal.org/article/S1051227619300603/fulltext
26. Dutra D. Modelagem numérica do efeito de aplicação de força em fantomas de material biológico usando espectroscopia de impedância elétrica [Internet]. Universidade do Estado de Santa Catarina; 2018 [cited 2020 Jan 26]. Available from: http://sistemabu.udesc.br/pergamumweb/vinculos/00005a/00005a00.pdf
27. BOLFE VJ, RIBAS SI, MONTEBELO MIL, GUIRRO RRJ. Comportamento da impedância elétrica dos tecidos biológicos durante estimulação elétrica transcutânea. Rev Bras Fisioter. 2007 Mar;11(2):153–9.
28. Matusin DP. Caracterização de osso cortical bovino in vitro por parâmetros ultrassônicos de reflexão [Internet]. [Rio de Janeiro]: Universidade Federal do Rio de Janeiro; 2016 [cited 2020 Jul 20]. Available from: http://www.peb.ufrj.br/teses/Tese0230_2016_01_06.pdf
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The submission of original articles to the Brazilian Journal of Medical Physics implies the transfer, by the authors, of the rights of print and digital publication. Copyright for published articles remains with the author, with journal rights on first publication. Authors may only use the same results in other publications by clearly indicating this journal as the original publisher. As we are an open access journal, free use of articles in educational, scientific, non-commercial applications is allowed, as long as the source is cited.
The Brazilian Journal of Medical Physics is under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).