PET Radiomic Features Variability: A Phantom Study on the Influence of Reconstruction and Discretization Method

Autores

  • Marcos Antônio Dórea Machado São Rafael Hospital https://orcid.org/0000-0002-0106-9769
  • Jean Lucas Pereira Pita Complexo Hospitalar Universitário Professor Edgard Santos/UFBA
  • Eduardo Martins Netto Universidade Federal da Bahia

DOI:

https://doi.org/10.29384/rbfm.2021.v15.19849001598

Palavras-chave:

Características Radiômicas do PET, Variabilidade, Quantificação, Padronização

Resumo

A variabilidade de características radiômicas do PET foram exploradas para diferentes métodos de reconstrução e parâmetros de quantificação. Foram realizadas 5 imagens do simulador IQ-NEMA com uma razão de concentração esfera-fundo de F-18 de 10:1. A atividade radiativa e o tempo de aquisição das imagens foram combinados para alcançar uma estatística de contagens típica de exames oncológicos com 18F-FDG. As imagens foram reconstruídas com os métodos OSEM e PSF, obtendo-se em seguida a quantificação de 99 marcadores de imagens a partir de dois métodos de discretização: fixed bin number (FBN = 16, 32 e 64 tons de cinza) e fixed bin width (FBW=0.25). Esta configuração resultou em 1.188 elementos de imagens (radiomic features), classificados quanto à variabilidade como baixa (<5.0%), intermediária (5-29.9%) ou alta (≥30%). Em geral, o método FBW resultou em marcadores mais estáveis. Um total de 499, 558 e 131 marcadores tiveram variabilidades classificadas como baixa, intermediária e alta, respectivamente. Marcadores de primeira ordem como energia e entropia, e marcadores de textura como entropia (GLCM), long run emphasis e short run emphasis (GLRLM) foram classificados como baixa variabilidade independentemente dos métodos de reconstrução e quantização. Outros marcadores de textura como large area emphasis (GLSZM), zone percentage (GLSZM) e complexity (NGTDM) foram classificados mais frequentemente como variabilidade intermediária ou alta. Estes achados podem facilitar a escolha e seleção de marcadores de imagens em aplicações futuras com radiômica em PET.

Downloads

Não há dados estatísticos.

Referências

1. SCHREVENS L, LORENT N, DOOMS C, VANSTEENKISTE J. The Role of PET Scan in Diagnosis, Staging, and Management of Non-Small Cell Lung Cancer. Oncologist. 2004;9:633-643.
2. Barrington SF, Mikhaeel NG, Kostakoglu L, et al. Role of imaging in the staging and response assessment of lymphoma: Consensus of the international conference on malignant lymphomas imaging working group. J Clin Oncol. 2014;32(27):3048-3058. doi:10.1200/JCO.2013.53.5229
3. Wahl RL, Jacene H, Kasamon Y, Lodge MA. Response Criteria in Solid Tumors. J Nucl Med. 2009;50(Suppl 1):122-150. doi:10.2967/jnumed.108.057307.From
4. Kanoun S, Rossi C, Casasnovas O. [18F]FDG-PET/CT in hodgkin lymphoma: Current usefulness and perspectives. Cancers (Basel). 2018;10(5):1-11. doi:10.3390/cancers10050145
5. Cook GJR, Yip C, Siddique M, et al. Are Pretreatment 18F-FDG PET Tumor Textural Features in Non-Small Cell Lung Cancer Associated with Response and Survival After Chemoradiotherapy? J Nucl Med. 2013;54(1):19-26. doi:10.2967/jnumed.112.107375
6. Cook GJR, Siddique M, Taylor BP, Yip C, Chicklore S, Goh V. Radiomics in PET: Principles and applications. Clin Transl Imaging. 2014;2(3):269-276. doi:10.1007/s40336-014-0064-0
7. De Geus-Oei LF, Van Der Heijden HFM, Corstens FHM, Oyen WJG. Predictive and prognostic value of FDG-PET in nonsmall-cell lung cancer. A systematic review. Cancer. 2007;110(8):1654-1664. doi:10.1002/cncr.22979
8. Vallieres M, Zwanenburg A, Badic B, Cheze-Le Rest C, Visvikis D, Hatt M. Responsible Radiomics Research for Faster Clinical Translation. J Nucl Med. Published online 2017:jnumed.117.200501. doi:10.2967/jnumed.117.200501
9. Hatt M, Tixier F, Pierce L, Kinahan PE, Le Rest CC, Visvikis D. Characterization of PET/CT images using texture analysis: the past, the present… any future? Eur J Nucl Med Mol Imaging. 2017;44(1):151-165. doi:10.1007/s00259-016-3427-0
10. Orlhac F, Soussan M, Maisonobe J-A, Garcia CA, Vanderlinden B, Buvat I. Tumor Texture Analysis in 18F-FDG PET: Relationships Between Texture Parameters, Histogram Indices, Standardized Uptake Values, Metabolic Volumes, and Total Lesion Glycolysis. J Nucl Med. 2014;55(3):414-422. doi:10.2967/jnumed.113.129858
11. Tixier F, Le Rest CC, Hatt M, et al. Intratumor Heterogeneity Characterized by Textural Features on Baseline 18F-FDG PET Images Predicts Response to Concomitant Radiochemotherapy in Esophageal Cancer. J Nucl Med. 2011;52(3):369-378. doi:10.2967/jnumed.110.082404
12. Zwanenburg A. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur J Nucl Med Mol Imaging. Published online 2019. doi:10.1007/s00259-019-04391-8
13. Pfaehler E, Jong JR De, Boellaard R. Repeatability of 18 F-FDG PET radiomic features : A phantom study to explore sensitivity to image reconstruction settings , noise , and delineation method. 2018;0(0):1-14. doi:10.1002/mp.13322
14. Traverso A, Wee L, Dekker A, Gillies R. Repeatability and Reproducibility of Radiomic Features : A Systematic Review. Radiat Oncol Biol. Published online 2018. doi:10.1016/j.ijrobp.2018.05.053
15. Galavis P, Hollensen C, Jallow N, Paliwal B, Jeraj R. NIH Public Access. Acta Oncol. 2010;49(7):1012-1016. doi:10.3109/0284186X.2010.498437
16. Nyflot MJ, Yang F, Byrd D, Bowen SR, Sandison GA, Kinahan PE. Quantitative radiomics: impact of stochastic effects on textural feature analysis implies the need for standards. J Med Imaging. 2015;2(4):041002. doi:10.1117/1.JMI.2.4.041002
17. Boellaard R, Delgado-bolton R, Oyen WJG, et al. FDG PET / CT : EANM procedure guidelines for tumour imaging : version 2 . 0. Published online 2015:328-354. doi:10.1007/s00259-014-2961-x
18. Machado MAD, Menezes VO, Namías M, et al. Protocols for Harmonized Quantification and Noise Reduction in Low Dose Oncological 18 F-FDG PET/CT Imaging. J Nucl Med Technol. Published online 2018:jnmt.118.213405. doi:10.2967/jnmt.118.213405
19. Kanoun S, Tal I, Berriolo-riedinger A, Rossi C. Influence of Software Tool and Methodological Aspects of Total Metabolic Tumor Volume Calculation on Baseline [ 18F ] FDG PET to Predict Survival in Hodgkin Lymphoma. 2015;C:1-15. doi:10.1371/journal.pone.0140830
20. Mettler J. Metabolic Tumour Volume for Response Prediction in Advanced-Stage Hodgkin Lymphoma. J Med Imaging. 2018;i:1-25. doi:10.2967/jnumed.118.210047
21. Griethuysen J, Fedorov A, Parmar C, Hosny A, Narayan V. Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res. 2018;77(21):1-8. doi:10.1158/0008-5472.CAN-17-0339.Computational
22. Hatt M, Majdoub M, Vallieres M, et al. 18F-FDG PET Uptake Characterization Through Texture Analysis: Investigating the Complementary Nature of Heterogeneity and Functional Tumor Volume in a Multi-Cancer Site Patient Cohort. J Nucl Med. 2015;56(1):38-44. doi:10.2967/jnumed.114.144055
23. Lartizien C, Rogez M, Niaf E, Ricard F. Computer-aided staging of lymphoma patients with FDG PET/CT imaging based on textural information. IEEE J Biomed Heal Informatics. 2014;18(3):946-955. doi:10.1109/JBHI.2013.2283658
24. Kaalep A, Burggraaff CN, Pieplenbosch S, et al. Quantitative implications of the updated EARL 2019 PET – CT performance standards. Published online 2019:1-16. doi:https://doi.org/10.1186/s40658-019-0257-8
25. Menezes VO, Machado MAD, Queiroz CC, et al. Optimization of oncological 18 F-FDG PET/CT imaging based on a multiparameter analysis. Med Phys. 2016;43(2):930-938. doi:10.1118/1.4940354
26. Kaalep A, Sera T, Rijnsdorp S, et al. Feasibility of state of the art PET / CT systems performance harmonisation. Published online 2018:1344-1361.
27. Ypsilantis P, Siddique M, Sohn H, Davies A. Predicting Response to Neoadjuvant Chemotherapy with PET Imaging Using Convolutional Neural Networks. PLoS One. Published online 2015:1-18. doi:10.1371/journal.pone.0137036
28. Bernardi E De, Buda A, Guerra L, et al. Radiomics of the primary tumour as a tool to improve 18 F-FDG-PET sensitivity in detecting nodal metastases in endometrial cancer. Published online 2018:1-9.
29. Collarino A, Ph D, Garganese G, et al. Radiomics in vulvar cancer : first clinical experience using 18 F-FDG PET / CT images. 2018;31(0). doi:10.2967/jnumed.118.215889
30. Zwanenburg, Alex et al. The image biomarker standardisation initiative.
31. Aide N, Lasnon C, Veit-haibach P, Sera T, Sattler B, Boellaard R. EANM / EARL harmonization strategies in PET quantification : from daily practice to multicentre oncological studies. Published online 2017. doi:10.1007/s00259-017-3740-2
32. Orlhac F, Boughdad S, Philippe C, et al. A post-reconstruction harmonization method for multicenter radiomic studies in PET. J Nucl Med. 2018;2(Md):jnumed.117.199935. doi:10.2967/jnumed.117.199935

Downloads

Publicado

2021-06-21

Como Citar

Antônio Dórea Machado, M. ., Pereira Pita, J. L., & Martins Netto, E. . (2021). PET Radiomic Features Variability: A Phantom Study on the Influence of Reconstruction and Discretization Method. Revista Brasileira De Física Médica, 15, 598. https://doi.org/10.29384/rbfm.2021.v15.19849001598

Edição

Seção

Artigo Original