Técnicas quantitativas de imagens por ressonância magnética

Gabriela Castellano, Carlos Ernesto Garrido Salmon


Técnicas quantitativas de imagem são aquelas que permitem a mensuração de variáveis físicas ou químicas, passíveis de serem comparadas entre diferentes regiões anatômicas e indivíduos. Embora a maioria das técnicas baseadas em ressonância magnética mais utilizadas na clínica não sejam quantitativas, existem várias técnicas baseadas nesse fenômeno que o são. O objetivo desta revisão é fornecer uma breve descrição de algumas das principais técnicas quantitativas de imagens baseadas em ressonância magnética, assim como de suas aplicações. As técnicas descritas são: relaxometria, imagens ponderadas por difusão, imagens do tensor de difusão, imagens de susceptibilidade magnética, espectroscopia e imagens espectroscópicas.


relaxometria; ponderação em difusão; tensor de difusão; susceptibilidade magnética; espectroscopia; imagens espectroscópicas

Texto completo:



Pierpaoli C. Quantitative Brain MRI. Top Magn Reson Imaging. 2010 Apr;21(2):63.

Carneiro AAO, Vilela GR, Araujo DB de, Baffa O. MRI relaxometry: methods and applications. Brazilian J Phys. 2006 Mar;36(1a).

Le Bihan D, Mangin JF, Poupon C, Clark CA, Pappata S, Molko N, et al. Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging. 2001 Apr;13(4):534–46.

Haacke EM, Mittal S, Wu Z, Neelavalli J, Cheng Y-CN. Susceptibility-Weighted Imaging: Technical Aspects and Clinical Applications, Part 1. Am J Neuroradiol. 2009 Jan;30(1):19–30.

van der Graaf M. In vivo magnetic resonance spectroscopy: basic methodology and clinical applications. Eur Biophys J. 2010 Mar;39(4):527–40.

Henkelman RM, Stanisz GJ, Graham SJ. Magnetization transfer in MRI: a review. NMR Biomed. 2001 Apr;14(2):57–64.

Petrella JR, Provenzale JM. MR Perfusion Imaging of the Brain. Am J Roentgenol. 2000 Jul;175(1):207–19.

Cowan B. Nuclear Magnetic Resonance and Relaxation. Cambridge: Cambridge University Press; 1997.

Tofts P. Quantitative MRI of the Brain. Chichester, UK: John Wiley & Sons, Ltd; 2003.

Barbosa JHO, Santos AC, Tumas V, Liu M, Zheng W, Haacke EM, et al. Quantifying brain iron deposition in patients with Parkinson’s disease using quantitative susceptibility mapping, R2 and R2*. Magn Reson Imaging. 2015 Jun;33(5):559–65.

Carr HY, Purcell EM. Effects of Diffusion on Free Precession in Nuclear Magnetic Resonance Experiments. Phys Rev. 1954 May 1;94(3):630–8.

Meiboom S, Gill D. Modified Spin‐Echo Method for Measuring Nuclear Relaxation Times. Rev Sci Instrum. 1958 Aug;29(8):688–91.

Deoni SCL. Quantitative Relaxometry of the Brain. Top Magn Reson Imaging. 2010 Apr;21(2):101–13.

Gustavsson H, Karlsson A, Bäck SAJ, Olsson LE, Haraldsson P, Engström P, et al. MAGIC-type polymer gel for three-dimensional dosimetry: intensity-modulated radiation therapy verification. Med Phys. 2003 Jun;30(6):1264–71.

Schwarcke MMB, Garrido Salmon CE, Nicolucci P, Baffa O. Dosimetria 3D do Iodo-131: Estudo com Gel MAGIC-f e Código de Simulação Monte Carlo PENELOPE. Rev Bras Física Médica. 2019 Jan 13;12(2):39.

Barbosa JHO. Conteúdo de íons paramagnéticos no cérebro e sua correlação com mapas quantitativos de Ressonância Magnética. Universidade de São Paulo. Ribeirão Preto; 2017.

Zuo J, Joseph GB, Li X, Link TM, Hu SS, Berven SH, et al. In vivo intervertebral disc characterization using magnetic resonance spectroscopy and T1ρ imaging: association with discography and Oswestry Disability Index and Short Form-36 Health Survey. Spine (Phila Pa 1976). 2012 Feb 1;37(3):214–21.

Schaefer PW, Copen WA, Lev MH, Gonzalez RG. Diffusion-weighted imaging in acute stroke. Magn Reson Imaging Clin N Am. 2006 May;14(2):141–68.

White NS, McDonald C, McDonald CR, Farid N, Kuperman J, Karow D, et al. Diffusion-weighted imaging in cancer: physical foundations and applications of restriction spectrum imaging. Cancer Res. 2014 Sep 1;74(17):4638–52.

Kang Y, Choi SH, Kim Y-J, Kim KG, Sohn C-H, Kim J-H, et al. Gliomas: Histogram Analysis of Apparent Diffusion Coefficient Maps with Standard- or High- b -Value Diffusion-weighted MR Imaging—Correlation with Tumor Grade. Radiology. 2011 Dec;261(3):882–90.

Souza EM de, Costa ET, Castellano G. Phantoms for diffusion-weighted imaging and diffusion tensor imaging quality control: a review and new perspectives. Res Biomed Eng. 2017 Jun;33(2):156–65.

Sener RN. Diffusion MRI: apparent diffusion coefficient (ADC) values in the normal brain and a classification of brain disorders based on ADC values. Comput Med Imaging Graph. 25(4):299–326.

Souza EM de. Development of a phantom for quality control of diffusion tensor images. Universidade Estadual de Campinas (UNICAMP); 2017.

Schaefer PW, Grant PE, Gonzalez RG. Diffusion-weighted MR imaging of the brain. Radiology. 2000 Nov;217(2):331–45.

Minati L, Węglarz WP. Physical foundations, models, and methods of diffusion magnetic resonance imaging of the brain: A review. Concepts Magn Reson Part A. 2007 Sep;30A(5):278–307.

Curran KM, Emsell L, Leemans A. Quantitative DTI measures. In: Van Hecke W, Emsell L, Sunaert S, editors. Diffusion Tensor Imaging: A Practical Handbook. Springer; 2016. p. 65–87.

Patel SA, Hum BA, Gonzalez CF, Schwartzman RJ, Faro SH, Mohamed FB. Application of voxelwise analysis in the detection of regions of reduced fractional anisotropy in multiple sclerosis patients. J Magn Reson Imaging. 2007 Sep;26(3):552–6.

Oishi K, Mielke MM, Albert M, Lyketsos CG, Mori S. DTI analyses and clinical applications in Alzheimer’s disease. J Alzheimers Dis. 2011;26 Suppl 3:287–96.

Arrigoni F, Peruzzo D, Gagliardi C, Maghini C, Colombo P, Iammarrone FS, et al. Whole-Brain DTI Assessment of White Matter Damage in Children with Bilateral Cerebral Palsy: Evidence of Involvement beyond the Primary Target of the Anoxic Insult. Am J Neuroradiol. 2016 Jul 1;37(7):1347–53.

Alegiani AC, MacLean S, Braass H, Siemonsen S, Gerloff C, Fiehler J, et al. Comprehensive analysis of early fractional anisotropy changes in acute ischemic stroke. Minnerup J, editor. PLoS One. 2017 Nov 30;12(11):e0188318.

Shan W, Wang X-L. Clinical application value of 3.0T MR diffusion tensor imaging in grade diagnosis of gliomas. Oncol Lett. 2017 Aug;14(2):2009–14.

Haacke EM, Xu Y, Cheng Y-CN, Reichenbach JR. Susceptibility weighted imaging (SWI). Magn Reson Med. 2004 Sep;52(3):612–8.

Haacke EM, Cheng NYC, House MJ, Liu Q, Neelavalli J, Ogg RJ, et al. Imaging iron stores in the brain using magnetic resonance imaging. Magn Reson Imaging. 2005 Jan;23(1):1–25.

Marques JP, Bowtell R. Application of a Fourier-based method for rapid calculation of field inhomogeneity due to spatial variation of magnetic susceptibility. Concepts Magn Reson Part B Magn Reson Eng. 2005 Apr;25B(1):65–78.

Langkammer C, Liu T, Khalil M, Enzinger C, Jehna M, Fuchs S, et al. Quantitative susceptibility mapping in multiple sclerosis. Radiology. 2013 May;267(2):551–9.

Reichenbach JR, Schweser F, Serres B, Deistung A. Quantitative Susceptibility Mapping: Concepts and Applications. Clin Neuroradiol. 2015 Oct 22;25(S2):225–30.

Barbosa JHO, Santos AC, Salmon CEG. Susceptibility weighted imaging: differentiating between calcification and hemosiderin. Radiol Bras. 2015 Apr;48(2):93–100.

Sun H, Walsh AJ, Lebel RM, Blevins G, Catz I, Lu J-Q, et al. Validation of quantitative susceptibility mapping with Perls’ iron staining for subcortical gray matter. Neuroimage. 2015 Jan;105:486–92.

Poullet J-B, Sima DM, Van Huffel S. MRS signal quantitation: A review of time- and frequency-domain methods. J Magn Reson. 2008 Dec;195(2):134–44.

Vanhamme, van den Boogaart A, Van Huffel S. Improved method for accurate and efficient quantification of MRS data with use of prior knowledge. J Magn Reson. 1997;129(1):35–43.

Stefan D, Cesare F Di, Andrasescu A, Popa E, Lazariev A, Vescovo E, et al. Quantitation of magnetic resonance spectroscopy signals: the jMRUI software package. Meas Sci Technol. 2009 Oct 1;20(10):104035.

Provencher SW. Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med. 1993 Dec;30(6):672–9.

Alger JR. Quantitative Proton Magnetic Resonance Spectroscopy and Spectroscopic Imaging of the Brain: A Didactic Review. Top Magn Reson Imaging. 2010 Apr;21(2):115–28.

Bertholdo D, Watcharakorn A, Castillo M. Brain proton magnetic resonance spectroscopy: introduction and overview. Neuroimaging Clin N Am. 2013 Aug;23(3):359–80.

Barker PB, Soher BJ, Blackband SJ, Chatham JC, Mathews VP, Bryan RN. Quantitation of proton NMR spectra of the human brain using tissue water as an internal concentration reference. NMR Biomed. 6(1):89–94.

Jansen JFA, Backes WH, Nicolay K, Kooi ME. 1H MR spectroscopy of the brain: absolute quantification of metabolites. Radiology. 2006 Aug;240(2):318–32.

Castillo M, Kwock L, Mukherji SK. Clinical applications of proton MR spectroscopy. AJNR Am J Neuroradiol. 1996 Jan;17(1):1–15.

de Graaf RA. In Vivo NMR Spectroscopy. Chichester, UK: John Wiley & Sons, Ltd; 2007.

DOI: http://dx.doi.org/10.29384/rbfm.2019.v13.n1.p57-65


  • Não há apontamentos.

Direitos autorais 2019 Revista Brasileira de Física Médica

Revista Brasileira de Física Médica - RBFM

ISSN: 1984-9001

Este obra está licenciada com uma Licença Creative Commons Atribuição-NãoComercial-SemDerivações 4.0 Internacional.

Desenvolvido por:

Logomarca da Lepidus Tecnologia