Determinação da Dose dos Fótons Contaminantes de Feixes de Elétrons Clínicos usando o Método de Recozimento Simulado Generalizado
DOI:
https://doi.org/10.29384/rbfm.2017.v11.n2.p2-6Keywords:
recozimento simulado generalizado, fótons contaminantes, elétrons clínicos, radioterapia, PDP, MATLAB, otimizaçãoAbstract
Os feixes de elétrons clínicos são compostos por uma mistura de elétrons puros e fótons de freamento produzidos nas estruturas internas do cabeçote do acelerador bem como no ar. O conhecimento acurado desses componentes é importante para o cálculo da dose quanto para o planejamento do tratamento. Existem ao menos duas abordagens para determinar a contribuição dos fótons na porcentagem de dose em profundidade dos elétrons clínicos: a) Método Analítico que calcula a dose dos fótons a partir da prévia determinação do espectro dos fótons de freamento incidentes; b) Método de Ajuste baseado em uma formula biexponencial semiempírica em que quatro parâmetros devem ser estabelecidos a partir de métodos de otimização. Os resultados revelam que o método de recozimento simulado generalizado consegue calcular a dose dos fótons contaminantes superestimando a dose na cauda não mais do que 0,6% da dose máxima (elétrons e fótons).
Downloads
References
Strydom. W, W. Parker, and M. Olivares. "Electron beams: physical and clinical aspects." Radiation oncology physics: a handbook for teachers and students. Vienna: International Atomic Energy Agency (IAEA) (2005): 273.
Das, Indra J., Chee W. Cheng, and Glenn A. Healey. "Optimum field size and choice of isodose lines in electron beam treatment." International Journal of Radiation Oncology* Biology* Physics 31.1 (1995): 157-163.
Rustgi, Surendra N., and James E. Rodgers. "Analysis of the bremsstrahlung component in 6–18 MeV electron beams." Medical physics 14.5 (1987): 884-888.
Deng, Jun, et al. "Derivation of electron and photon energy spectra from electron beam central axis depth dose curves." Physics in medicine and biology 46.5 (2001): 1429.
Sorcini, B. B., S. Hyödynmaa, and A. Brahme. "The role of phantom and treatment head generated bremsstrahlung in high-energy electron beam dosimetry." Physics in medicine and biology 41.12 (1996): 2657.
Zhu, Timothy C., Indra J. Das, and Bengt E. Bjärngard. "Characteristics of bremsstrahlung in electron beams." Medical physics 28.7 (2001): 1352-1358.
Brahme, A., and H. Svensson. "Radiation beam characteristics of a 22 MeV microtron." Acta radiologica: oncology, radiation, physics, biology 18.3 (1979): 244-272.
Faddegon, B. A., and I. Blevis. "Electron spectra derived from depth dose distributions." Medical physics 27.3 (2000): 514-526.
Li, Gui, et al. "Photon energy spectrum reconstruction based on Monte Carlo and measured percentage depth dose in accurate radiotherapy." Prog Nucl Sci Technol 2 (2011): 160-164.
Carletti, C., P. Meoli, and W. R. Cravero. "A modified simulated annealing algorithm for parameter determination for a hybrid virtual model." Physics in medicine and biology 51.16 (2006): 3941.
Moret, Marcelo A., et al. "Stochastic molecular optimization using generalized simulated annealing." Journal of computational chemistry 19.6 (1998): 647-657.
Xiang, Yang, et al. "Generalized simulated annealing for global optimization: the GenSA package." R Journal 5.1 (2013).
Tsallis, Constantino, and Daniel A. Stariolo. "Generalized simulated annealing." Physica A: Statistical Mechanics and its Applications 233.1-2 (1996): 395-406.
Tsallis, Constantino. "Possible generalization of Boltzmann-Gibbs statistics." Journal of statistical physics 52.1 (1988): 479-487.
Kirkpatrick, Scott, C. Daniel Gelatt, and Mario P. Vecchi. "Optimization by simulated annealing." science 220.4598 (1983): 671-680.
Szu, Harold, and Ralph Hartley. "Fast simulated annealing." Physics letters A 122.3-4 (1987): 157-162.
Xiang, Y., and X. G. Gong. "Efficiency of generalized simulated annealing." Physical Review E 62.3 (2000): 4473.
Schanze, Thomas. "An exact D-dimensional Tsallis random number generator for generalized simulated annealing." Computer physics communications 175.11 (2006): 708-712.
Low, Daniel A., et al. A technique for the quantitative evaluation of dose distributions. Medical physics 25.5: 656-661. 1998.
Chetty, Indrin J., et al. "Report of the AAPM Task Group No. 105: Issues associated with clinical implementation of Monte Carlo‐based photon and electron external beam treatment planning." Medical physics 34.12 (2007): 4818-4853.
Sumida, Iori, et al. "Novel radiobiological gamma index for evaluation of 3-dimensional predicted dose distribution." International Journal of Radiation Oncology* Biology* Physics 92.4 (2015): 779-786.
Geurts, 2017. 1D, 2D or 3D gamma index computation in Matlab. Disponível no seguinte enlace web: https://github.com/mwgeurts/gamma.
Downloads
Published
How to Cite
Issue
Section
License
The submission of original articles to the Brazilian Journal of Medical Physics implies the transfer, by the authors, of the rights of print and digital publication. Copyright for published articles remains with the author, with journal rights on first publication. Authors may only use the same results in other publications by clearly indicating this journal as the original publisher. As we are an open access journal, free use of articles in educational, scientific, non-commercial applications is allowed, as long as the source is cited.
The Brazilian Journal of Medical Physics is under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).