Using Zinc Particles in a Fantoma to Simulate Multiple Sclerosis Lesions on Magnetic Resonance Imaging

Authors

  • Hulder Henrique Zaparoli Faculdade de Ciências/Universidade Estadual Paulista “Júlio de Mesquita Filho”- UNESP, Bauru https://orcid.org/0000-0001-6784-2083
  • Marcela de Oliveira Faculdade de Ciências/Universidade Estadual Paulista “Júlio de Mesquita Filho”- UNESP, Bauru https://orcid.org/0000-0003-4144-7629
  • Paulo Noronha Lisboa-Filho Faculdade de Ciências/Universidade Estadual Paulista “Júlio de Mesquita Filho”- UNESP, Bauru https://orcid.org/0000-0002-7734-4069
  • Marina Piacenti-Silva Faculdade de Ciências/Universidade Estadual Paulista “Júlio de Mesquita Filho”- UNESP, Bauru https://orcid.org/0000-0001-7096-3652

DOI:

https://doi.org/10.29384/rbfm.2021.v15.19849001619

Keywords:

multiple sclerosis, magnetic resonance imaging, zinc, phantom

Abstract

Multiple sclerosis (MS) is an autoimmune disease characterized by causing damage to the myelin sheath, which, when damaged, impairs the efficient conduction of neural impulses. The cause of MS includes genetic and environmental factors that contribute to the risk of the disease. Although this disease is believed to be multifactorial in etiology, studies point to a joint role for environmental exposure to heavy metals, susceptibility to genes associated with the immune response and the subsequent development of MS. Among the possible metals involved as external agents that cause multiple sclerosis, there is Zinc (Zn), as this element can play a significant role in the pathogenesis of MS, characterized by its high concentration in the central nervous system and its involvement in physiology of the brain. Thus, interruption of Zn homeostasis may be associated with the development of neurodegenerative diseases. The main test used to detect brain changes in patients with MS is magnetic resonance imaging (MRI). In the MRI, MS is characterized by brain lesions where the neurodegeneration process occurs. MRI studies seek to include quantitative mapping of markers, in addition to a qualitative image assessment. Although quantitative mapping of markers such as metals can significantly increase the quantity, reliability and comparability of data obtained from medical images, careful standardization of protocols and the development of standard reference objects or calibration structures (phantoms) are required to validate the accuracy of these measurements in vivo and to evaluate the repeatability and reproducibility of the measurements in the images. Thus, this work had as purpose the use and identification of zinc in the magnetic resonance images obtained using a brain simulator object (phantom), in order to simulate the injuries caused by MS.

Downloads

Download data is not yet available.

References

1. Thompson AJ, Banwell BL, Barkhof F, Carroll WM, Coetzee T, Comi G, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. The Lancet Neurology. 2018;17(2):162–73.
2. Choi BY, Jung JW, Suh SW. The emerging role of zinc in the pathogenesis of multiple sclerosis. International journal of molecular sciences. 2017;18(10):2070.
3. Bernardino IC, Carvalho VRJ de. DIAGNÓSTICO DA ESCLEROSE MÚLTIPLA EM FOCO NO EXAME DE RESSONÂNCIA MAGNÉTICA. In: II Congresso Internacional do Grupo Unis. Fundação de Ensino e Pesquisa do Sul de Minas; 2016.
4. Klein PC. Detecção de lesões de esclerose múltipla em imagens de ressonância magnética do tipo Fluid Attenuated Inversion Recovery (FLAIR). Pontifícia Universidade Católica do Rio Grande do Sul; 2016.
5. Bakshi R, Thompson AJ, Rocca MA, Pelletier D, Dousset V, Barkhof F, et al. MRI in multiple sclerosis: current status and future prospects. Lancet Neurol. julho de 2008;7(7):615–25.
6. Farias FR. Geração de imagens para a quantificação das lesões de esclerose múltipla com exames de ressonância magnética do cérebro humano utilizado no protocolo de rotina da prática clínica. 23 de abril de 2014;
7. Pinto RIP. Segmentação Automática de Lesões de Esclerose Múltipla em Imagens de Ressonância Magnética. 2017;
8. Santos VM. Diagnóstico de esclerose múltipla por ressonância magnética. Revista Remecs - Revista Multidisciplinar de Estudos Científicos em Saúde. abril de 2019;3(5):3–13.
9. Belbasis L, Bellou V, Evangelou E, Ioannidis JPA, Tzoulaki I. Environmental risk factors and multiple sclerosis: an umbrella review of systematic reviews and meta-analyses. Lancet Neurol. março de 2015;14(3):263–73.
10. Napier MD, Poole C, Satten GA, Ashley-Koch A, Marrie RA, Williamson DM. Heavy metals, organic solvents, and multiple sclerosis: An exploratory look at gene-environment interactions. Archives of environmental & occupational health. 2016;71(1):26–34.
11. Bredholt M, Frederiksen JL. Zinc in multiple sclerosis: A systematic review and meta-analysis. ASN neuro. 2016;8(3):1759091416651511.
12. Oraby MI, Hussein M, Abd Elkareem R, Elfar E. The emerging role of serum zinc in motor disability and radiological findings in patients with multiple sclerosis. The Egyptian Journal of Neurology, Psychiatry and Neurosurgery. 2019;55(1):1–5.
13. Tamburo E, Varrica D, Dongarrà G, Grimaldi LME. Trace elements in scalp hair samples from patients with relapsing-remitting multiple sclerosis. PLoS One. 2015;10(4):e0122142.
14. de Oliveira M, Gianeti TMR, da Rocha FCG, Lisboa-Filho PN, Piacenti-Silva M. A preliminary study of the concentration of metallic elements in the blood of patients with multiple sclerosis as measured by ICP-MS. Scientific Reports. 4 de agosto de 2020;10(1):13112.
15. Keenan KE, Ainslie M, Barker AJ, Boss MA, Cecil KM, Charles C, et al. Quantitative magnetic resonance imaging phantoms: a review and the need for a system phantom. Magnetic resonance in medicine. 2018;79(1):48–61.
16. Laubach HJ, Jakob PM, Loevblad KO, Baird AE, Bovo MP, Edelman RR, et al. A phantom for diffusion‐weighted imaging of acute stroke. Journal of Magnetic Resonance Imaging. 1998;8(6):1349–54.
17. Mattila S, Renvall V, Hiltunen J, Kirven D, Sepponen R, Hari R, et al. Phantom‐based evaluation of geometric distortions in functional magnetic resonance and diffusion tensor imaging. Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine. 2007;57(4):754–63.
18. Grochowski C, Blicharska E, Krukow P, Jonak K, Maciejewski M, Szczepanek D, et al. Analysis of trace elements in human brain: its aim, methods, and concentration levels. Frontiers in chemistry. 2019;7:115.
19. Simon JH, Li D, Traboulsee A, Coyle PK, Arnold DL, Barkhof F, et al. Standardized MR imaging protocol for multiple sclerosis: Consortium of MS Centers consensus guidelines. American Journal of Neuroradiology. 2006;27(2):455–61.
20. Johnson H, Harris G, Williams K. BRAINSFIT: Mutual information registrations of whole-brain 3D Images, using the insight toolkit. 1º de janeiro de 2007;
21. Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA, et al. N4ITK: improved N3 bias correction. IEEE Trans Med Imaging. junho de 2010;29(6):1310–20.

Published

2021-11-19

How to Cite

Zaparoli, H. H., de Oliveira, M., Lisboa-Filho, P. N. ., & Piacenti-Silva, M. . (2021). Using Zinc Particles in a Fantoma to Simulate Multiple Sclerosis Lesions on Magnetic Resonance Imaging. Brazilian Journal of Medical Physics, 15, 619. https://doi.org/10.29384/rbfm.2021.v15.19849001619

Issue

Section

Artigo Original

Most read articles by the same author(s)