Detecção Automática do Teste de Winston-Lutz em Filmes Radiocrômicos

Autores

  • Guilherme Giacomini InRAD - HCFMUSP
  • Victor Augusto Bertotti Ribeiro Serviço de Radioterapia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil

DOI:

https://doi.org/10.29384/rbfm.2020.v14.19849001515

Palavras-chave:

Garantia da qualidade, Radiocirurgia, Teste de Winston-Lutz, Filme radiocrômico

Resumo

Radiocirurgia estereotáxica é uma técnica altamente precisa para entrega de altas doses em um pequeno volume alvo utilizando alto gradiente de dose, exigindo precisão submilimétrica na localização e entrega de dose. Para garantir acurácia requerida, recomenda-se a verificação do alinhamento do eixo de rotação do gantry, mesa e colimador, realizada através do teste de Winston-Lutz (WL).  O teste de WL realizado através de filmes é tradicionalmente analisado visualmente, mostrando-se com variabilidade inter e intra-observador. Tal limitação pode ser evitada através da digitalização dos filmes e uso de software para análise. Uma vez que o uso de filmes em programas de garantia da qualidade para radiocirurgia ainda é uma realidade comum em muitos centros de radioterapia, o objetivo deste estudo foi desenvolver um algoritmo para análise do teste de WL realizado com filme de forma tridimensional, objetiva e reprodutível. Pela análise dos resultados, o algoritmo desenvolvido conseguiu detectar com precisão o deslocamento obtido a partir do teste de WL utilizando filmes radiocrômicos de forma tridimensional, mostrando forte potencial para ser utilizado clinicamente. Sua implementação possibilita redução da subjetividade e variabilidade da análise devido à automatização do processo, possibilitando criação automática de relatórios para o programa de garantia de qualidade em radiocirurgias.

Downloads

Não há dados estatísticos.

Referências

Ravindran PB. A study of Winston-Lutz test on two different electronic portal imaging devices and with low energy imaging. Australas Phys Eng Sci Med. 2016;39(3):677-85.

Lutz W, Winston KR, Maleki N. A system for stereotactic radiosurgery with a linear accelerator. Int J Radiat Oncol Biol Phys. 1988;14(2):373-81.

Rahimian J, Chen JC, Rao AA, Girvigian MR, Miller MJ, Greathouse HE. Geometrical accuracy of the Novalis stereotactic radiosurgery system for trigeminal neuralgia. J Neurosurg. 2004;101 Suppl 3:351-5.

Rowshanfarzad P, Sabet M, O'Connor DJ, Greer PB. Isocenter verification for linac-based stereotactic radiation therapy: review of principles and techniques. J Appl Clin Med Phys. 2011;12(4):3645.

Takakura T, Mizowaki T, Nakata M, Yano S, Fujimoto T, Miyabe Y, et al. The geometric accuracy of frameless stereotactic radiosurgery using a 6D robotic couch system. Phys Med Biol. 2010;55(1):1-10.

Schell MC, Bova FJ, Larson DA, Leavitt DD. Stereotactic Radiosurgery Report of Task Group 42. AAPM Report No 54. 1995.

Geyer P, Blank H, Evers C, Leichtner T, Alheit H. Filmless evaluation of the mechanical accuracy of the isocenter in stereotactic radiotherapy. Strahlenther Onkol. 2007;183(2):76-80.

Du W, Yang J. A robust Hough transform algorithm for determining the radiation centers of circular and rectangular fields with subpixel accuracy. Phys Med Biol. 2009;54(3):555-67.

Klein EE, Hanley J, Bayouth J, Yin FF, Simon W, Dresser S, et al. Task Group 142 report: quality assurance of medical accelerators. Med Phys. 2009;36(9):4197-212.

Gao J, Liu X. Off-Isocenter Winston-Lutz Test for Stereotactic Radiosurgery/Stereotactic Body Radiotherapy International Journal of Medical Physics. 2016;5:154-61.

Winey B, Sharp G, Bussiere M. A fast double template convolution isocenter evaluation algorithm with subpixel accuracy. Med Phys. 2011;38(1):223-7.

Chojnowski J, Gajewski R. An automatic method of the isocentre position verification for micromultileaf collimator based radiosurgery system. Australas Phys Eng Sci Med. 2011;34(1):15-21.

Grimm J, Grimm SY, Das IJ, Zhu Y, Yeo I, Xue J, et al. A quality assurance method with submillimeter accuracy for stereotactic linear accelerators. J Appl Clin Med Phys. 2010;12(1):3365.

Zhang J, Hu J. Image Segmentation Based on 2D Otsu Method with Histogram Analysis. International Conference on Computer Science and Software Engineering - IEEE. 2008.

Giacomini G, Pavan ALM, Altemani JMC, Duarte SB, Fortaleza C, Miranda JRA, et al. Computed tomography-based volumetric tool for standardized measurement of the maxillary sinus. PLoS One. 2018;13(1):e0190770.

Huang Y, Zhao B, Chetty IJ, Brown S, Gordon J, Wen N. Targeting Accuracy of Image-Guided Radiosurgery for Intracranial Lesions: A Comparison Across Multiple Linear Accelerator Platforms. Technology in cancer research & treatment. 2016;15(2):243-8.

Arp DT, Carl J. Exactrac X-ray and Beam Isocenters - What's the difference. Med Phys. 2012;39(3):1418-23.

Bland JM, Altman DG. Measuring agreement in method comparison studies. Stat Methods Med Res. 1999;8(2):135-60.

Low DA, Li Z, Drzymala RE. Minimization of target positioning error in accelerator-based radiosurgery. Med Phys. 1995;22(4):443-8.

Tsai JS. Analyses of Multi-irradiation Film for System Alignments in Stereotactic Radiotherapy (SRT) and Radiosurgery (SRS) Phys Med Biol. 1996;41(9):1597-620.

Downloads

Publicado

2020-12-19

Como Citar

Giacomini, G., & Ribeiro, V. A. B. (2020). Detecção Automática do Teste de Winston-Lutz em Filmes Radiocrômicos. Revista Brasileira De Física Médica, 14, 515. https://doi.org/10.29384/rbfm.2020.v14.19849001515

Edição

Seção

Artigo Original

Artigos mais lidos pelo mesmo(s) autor(es)