Neutron stimulated emission computed tomography applied to the assessment of calcium deposition due to the presence of microcalcifications associated with breast cancer
DOI:
https://doi.org/10.29384/rbfm.2011.v5.n1.p41-46Abstract
In this paper we presented an application of the Neutron Stimulated Emission Computed Tomography (NSECT), which uses a thin beam of fast neutrons to stimulate stable nuclei in a sample, emitting characteristic gamma radiation. The photon energy is unique and it is used to identify the emitting nuclei. This technique was applied for evaluating the calcium isotopic composition changing due to the development of breast microcalcifications. A particular situation was simulated in which clustered microcalcifications were modeled with diameters less than 1.40 mm. In this case, neutron beam breast spectroscopy was successful in detecting the counting changes in the photon emission spectra for energies, which are characteristics of 40Ca isotope in a low deposited dose rate.Downloads
Downloads
How to Cite
Issue
Section
License
The submission of original articles to the Brazilian Journal of Medical Physics implies the transfer, by the authors, of the rights of print and digital publication. Copyright for published articles remains with the author, with journal rights on first publication. Authors may only use the same results in other publications by clearly indicating this journal as the original publisher. As we are an open access journal, free use of articles in educational, scientific, non-commercial applications is allowed, as long as the source is cited.
The Brazilian Journal of Medical Physics is under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).