CONFRONT: Proposal and implementation of an automatic calculation checker in R from XiO®

Authors

  • Murilo Guimarães Borges Universidade Estadual de Campinas http://orcid.org/0000-0002-9854-5783
  • Rafael Bruno Barbosa Lima Universidade Estadual de Campinas
  • Fabiana Ogata Pereira Universidade Estadual de Campinas
  • Phelipe Amaral Ferreira Costa
  • Thallis Alves Santos Universidade Estadual de Campinas
  • Tamara Rodrigues Torres Adib Antonio Universidade Estadual de Campinas
  • Bruna Biazotto Universidade Estadual de Campinas
  • Marcio Tokarski Pereira Universidade Estadual de Campinas https://orcid.org/0000-0001-8564-294X

DOI:

https://doi.org/10.29384/rbfm.2022.v16.19849001595

Keywords:

Dose, Calculation, Radiotherapy, Checker

Abstract

Radiotherapy treatment is complex and involves the understanding of principles of medical physics, radiobiology, radiological protection, dosimetry, planning, simulation and integration of radiotherapy with other treatment modalities. As a fundamental physical parameter to establish the modality and success of the treatment, the dose to be delivered must comply with the prescribed dose, which makes its calculation or determination a central part of a therapeutic approval. At the national level, the “CNEN NN 6.10: Requisitos de segurança e proteção radiológica para serviços de radioterapia”, establishes as a responsibility to the radiotherapy services that “there must have a second dose calculation system to verify treatment planning”. In this sense, we describe the development and implementation of an automatic checker for the calculation of the monitor units and the dose at the calculation point independently of the XiO® treatment planning system, available at the radiotherapy service of Hospital das Clínicas, Universidade Estadual de Campinas, and applicable to other services by inserting and adjusting the commissioning tables to the system. The computational environment chosen for the development of this project was R, with the RStudio development interface. The monitor units' calculation precision and dose accuracy by the inverse calculation, implemented by the checker is at least comparable to the manual calculation.

Downloads

Download data is not yet available.

References

1. de Araújo LP, de Sá NM, Atty AT de M. Necessidades Atuais de Radioterapia no SUS e Estimativas para o Ano de 2030. Rev. Brasileira de Cancerologia. 2016 62(1):35-2. Disponível em: https://rbc.inca.gov.br/revista/index.php/revista/article/view/177.
2. Mendez LC, Moraes FY, Fernandes GDS, Weltman E. Cancer deaths due to lack of universal access to radiotherapy in the Brazilian Public Health System. Clinical Oncology, 2018 30(1), e29-e36. DOI: 10.1016/j.clon.2017.09.003.
3. Brahme A. Dosimetric Precision Requirements in Radiation Therapy. Acta Radiologica: Oncology. 1984 23:5, 379-391, DOI: 10.3109/02841868409136037.
4. van der Merwe D, Van Dyk J, Healy B, Zubizarreta E, Izewska J, Mijnheer B, Meghzifene A. Accuracy requirements and uncertainties in radiotherapy: a report of the International Atomic Energy Agency. Acta oncológica. 2017 56(1), 1-6. DOI: 10.1080/0284186X.2016.1246801.
5. Gibbons JP, Antolak, JA, Followill D., Huq MS, Klein EE, Lam KL, Palta JR, Roback DM, Reid M, Khan FM. Monitor unit calculations for external photon and electron beams: Report of the AAPM Therapy Physics Committee Task Group No. 71. Med. Phys., 2014 41: 031501. DOI:10.1118/1.4864244.
6. Metcalfe P, Kron T, Hoban P. The physics of radiotherapy x-rays and electrons. Medical Physics Publ. 2012.
7. Yoriyaz H, Fonseca GP, Bellezzo M. Sistemas de Planejamento em Radioterapia. Rev Bras Fis Med. 2019 13(1):92-8. Disponível em: https://rbfm.org.br/rbfm/article/view/512.
8. Chen WZ, Xiao Y, Li J. Impact of dose calculation algorithm on radiation therapy. World J Radiol. 2014 6(11):874-80. DOI: 10.4329/wjr.v6.i11.874.
9. Knöös T, et al. Comparison of dose calculation algorithms for treatment planning in external photon beam therapy for clinical situations. Physics in Medicine & Biology. 2006 51.22 5785.
10. Tillikainen L, Helminen H, Torsti T, Siljamäki S, Alakuijala J, Pyyry J, Ulmer W. A 3D pencil-beam-based superposition algorithm for photon dose calculation in heterogeneous media. Physics in Medicine & Biology. 2008 53(14), 3821.
11. Knöös T. 3D dose computation algorithms. In J Phys Conf Ser. 2017 847, p. 012037. DOI:10.1088/1742-6596/847/1/012037.
12. Ahnesjö A. Collapsed cone convolution of radiant energy for photon dose calculation in heterogeneous media. Med. Phys. 1989 16: 577-592. DOI:10.1118/1.596360.
13. Fernandes MAR, Fontana JM, Santos VHP, Nunes IPF, Okawabata FS. Determinação da dose absorvida na água – Avaliação dos fatores de calibração de conjuntos dosimétricos de uso em radioterapia. Rev Bras Fis Med. 2016 8(3):22-5. DOI: 10.29384/rbfm.2014.v8.n3.p22-25.
14. Ahnesjö A, Aspradakis MM. Dose calculations for external photon beams in radiotherapy. Physics in Medicine & Biology. 1999 44(11), R99.
15. Gopan O, et al. Utilizing simulated errors in radiotherapy plans to quantify the effectiveness of the physics plan review. Med. Phys. 2018 45:5359-5365. DOI:10.1002/mp.13242.
16. Covington EL, et al. Improving treatment plan evaluation with automation. Journal of Applied Clinical Medical Physics, 2016 17:16-31. DOI:10.1120/jacmp.v17i6.6322.
17. de los Santos EF, et al. Medical Physics Practice Guideline 4.a: Development, implementation, use and maintenance of safety checklists. Journal of Applied Clinical Medical Physics, 2015 16:3, p. 37–59. DOI: 10.1120/jacmp.v16i3.5431.
18. Hendee WR, Herman MG. Improving patient safety in radiation oncology. Med. Phys. 2011 38: 78-82. DOI:10.1118/1.3522875.
19. Silva MS, dos Santos MR, da Silveira TB, da Silva lP, Fortes SS. Validação do IMSure como software de verificação secundária de dose na rotina clínica do Instituto Nacional de Câncer (INCa). Brazilian Journal of Radiation Sciences. 2019 7(3). DOI: 10.15392/bjrs.v7i3.930.
20. Halabi T, Lu HM. Automating checks of plan check automation. Journal of Applied Clinical Medical Physics, 2014 15: 1-8. DOI:10.1120/jacmp.v15i4.4889.
21. CNEN. Norma CNEN NN 6.10: Requisitos de segurança e proteção radiológica para serviços de radioterapia. 2014.
22. R CORE TEAM. R: A Language and Environment for Statistical Computing. 2014. Disponível em: http://www.r-project.org/.
23. RSTUDIO TEAM. RStudio: Integrated Development Environment for R. 2020. Disponível em: http://www.rstudio.com/. Acessado em 22/09/20.
24. ELEKTA. XiO® - Precision plans for proton therapy. 2020. Disponível em: https://www.elekta.com/software-solutions/treatment-management/external-beam-planning/xio. Acessado em 22/09/20.
25. Spezi E; Lewis DG; Smith, CW. A DICOM-RT-based toolbox for the evalua-tion and verification of radiotherapy plans. Physics in Medicine and Biology, 2002 47,23, p. 4223–4232. DOI: 10.1088/0031-9155/47/23/308.
26. MINISTÉRIO DA SAÚDE. Plano de Expansão da Radioterapia no SUS. 2020. Disponível em: https://www.saude.gov.br/ciencia-e-tecnologia-e-complexo-industrial/complexo-industrial/plano-de-expansao-da-radioterapia-no-sus. Acesso em: 22/09/20.
27. Gomes MAS, Kovaleski JL, Pagani RN, Zammar G. Transferência de tecnologia na política de offset: o caso do plano de expansão da radioterapia. Navus-Revista de Gestão e Tecnologia. 2019 9(1), 182-191. DOI: 10.22279/navus.2019.v9n1.p182-191.812.
28. Harting C, Peschke P, Karger CP. Computer simulation of tumour control probabilities after irradiation for varying intrinsic radio-sensitivity using a single cell based model, Acta Oncologica, 2010 49:8, 1354-1362, DOI: 10.3109/0284186X.2010.485208.
29. Bortfeld T, Jiang SB, Rietzel E. Effects of motion on the total dose distribution. In Seminars in radiation oncology. 2004 14:1 41-51). DOI: 10.1053/j.semradonc.2003.10.011.
30. Palanisamy M, David K, Durai M, Bhalla N, Puri A. Dosimetric impact of statistical uncertainty on Monte Carlo dose calculation algorithm in volumetric modulated arc therapy using Monaco TPS for three different clinical cases. Reports of Practical Oncology & Radiotherapy. 2019 24(2), 188-199. DOI:10.1016/j.rpor.2019.01.005.
31. Urie M et al. The role of uncertainty analysis in treatment planning. International Journal of Radiation Oncology Biology Physics. 1991 21(1), 91-107. DOI: 10.1016/0360-3016(91)90170-9.
32. Van Herk M. Errors and margins in radiotherapy. In Seminars in radiation oncology. 2004 14:1 52-64. WB Saunders. DOI:10.1053/j.semradonc.2003.10.003.
33. Calandrino R, et al. Detection of systematic errors in external radiotherapy before treatment delivery. Radiotherapy and Oncology. 1997 45(3), 271-274. DOI: 10.1016/S0167-8140(97)00095-9.
34. Lam C, et al. Factors Influencing Radiation Therapists' Perceptions of Performing Manual Monitor Unit Calculations in a Computer-Based Work Environment. Journal of Medical Imaging and Radiation Sciences. 2013 44(1), 31-36. DOI: 10.1016/j.jmir.2012.09.002.
35. Duggan L, Kron T, Howlett S, Skov A, O'Brien P. An independent check of treatment plan, prescription and dose calculation as a QA procedure. Radiotherapy and oncology. 1997 42(3), 297-301. DOI: 10.1016/S0167-8140(97)01906-3.
36. IAEA. TECDOC-1040: Design and implementation of a radiotherapy programme: Clinical, medical physics, radiation protection and safety aspects. 1998.

Published

2022-06-21

How to Cite

Borges, M. G., Lima, R. B. B., Pereira, F. O., Costa, P. A. F., Santos, T. A., Antonio, T. R. T. A., Biazotto, B., & Pereira, M. T. (2022). CONFRONT: Proposal and implementation of an automatic calculation checker in R from XiO®. Brazilian Journal of Medical Physics, 16, 595. https://doi.org/10.29384/rbfm.2022.v16.19849001595

Issue

Section

Artigo Original