Numeric Dosimetry during a periapical radiography: study by Monte Carlo Simulation
DOI:
https://doi.org/10.29384/rbfm.2024.v18.19849001810Keywords:
Monte Carlo simulation, radiodiagnosis, intraoral radiography, periapical techniqueAbstract
Radiography is an indispensable tool in dentistry for the visualization of dental and maxillofacial structures. Because it makes roots, dental crowns, and alveolar bone visible, intraoral periapical radiography is unique and crucial for diagnosis and planning. Ionizing radiation exposure, however, carries hazards, particularly for sensitive tissues including the thyroid, salivary glands, and eye lens. The purpose of this work is to use Monte Carlo simulations to compute the conversion coefficients of absorbed dose (CC[D]), in the main angles of the periapical radiography technique, for the major tissues in the head and neck area. The parotid gland, with a CC[D] of 1.53E-1 (0.7%) MeV/g/source-particle, presented the highest values, more than the lens or thyroid, according to our results. The main reason for this being the most exposed structure is its position in relation to the primary beam.
Downloads
References
Okuno E, Yoshimura E. Física das radiações. Oficina de Textos. 2010.
Chauhan V, Wilkins R. A comprehensive review of the literature on the biological effects from dental X-ray exposures. International Journal of Radiation Biology. 2019; 95(2):107-119. DOI: https://doi.org/10.1080/09553002.2019.1547436.
Gupta A, Devi P, Srivastava R, Jyoti B. Intraoral periapcal radiography – basic yet intrigue: A review. Jornal de Pesquisa e Educação Odontológica de Bangladesh. 2014.
Biaggi G. Expressão da proteína γ H2AX e 8-OHdG em glândula salivar parótida de ratos expostos a radiação X. Trabalho de Conclusão de Curso, Faculdade de Odontologia de Araçatuba da Universidade Estadual “Júlio de Mesquita filho” – UNESP. 2018.
Yoriyaz H. Método de Monte Carlo: princípios e aplicações em Física Médica. Revista Brasileira de Física Médica. 2009; 3(1):141-9. DOI: https://doi.org/10.29384/rbfm.2009.v3.n1.p141-149.
Machado, A. T, Guimarães, G. B, de Souza Santos, W, Perini, A. P, Neves, L. P. Avaliação das doses em tecidos durante radiografia interproximal: estudo por simulação de Monte Carlo. Revista Brasileira de Física Médica. 2022; 16: 684-684. DOI: https://doi.org/10.29384/rbfm.2022.v16.19849001684.
Ohnishi S. Gxsview: Geometry and cross section viewer for calculating radiation transport. SoftwareX. 2021; 1(14):100681. DOI: https://doi.org/10.1016/j.softx.2021.100681.
Manual do proprietário do aparelho de Raios-X Odontológico D700 Max. Alliage S/A Indústrias Médico Odontológica. Rev. 08. 2021.
Poludniowski G.G, Evans P. M. Calculation of x-ray spectra emerging from an x-ray tube. Part I. Electron penetration characteristics in x-ray targets. Medical physics. 2007; 34(6Part1):2164-74.19. DOI: https://doi.org/10.1118/1.2734725.
Poludniowski G. G. Calculation of x-ray spectra emerging from an x-ray tube. Part II. X-ray production and filtration in x-ray targets. Medical physics. 2007; 34(6Part1):2175-86.20. DOI: https://doi.org/10.1118/1.2734726.
Poludniowski G. G, Landry G, Deblois F, Evans P. M, Verhaegen F. SpekCalc: a program to calculate photon spectra from tungsten anode x-ray tubes. Physics in Medicine & Biology. 2009; 54(19):433. DOI: https://doi.org/10.1088/0031-9155/54/19/N01
Whaites E, Drage N. Essentials of dental radiography and radiology. Elsevier Health Sciences. 2013.
Werner C. J, Little R. C. MCNP6. 2 Release Notes. Los Alamos National Lab. (LANL), Los Alamos, NM (United States).
Detwiler R. S, McConn R. J, Grimes T. F, Upton S. A, Engel E. J. Compendium of Material Composition Data for Radiation Transport Modeling. Pacific Northwest National Lab. (PNNL), Richland, WA (United States). 2021. DOI: https://doi.org/10.2172/1782721.
Da Silva L. M, Silva G, Santos W. D. Determinação da dose de entrada na pele devido a raio-X odontológico utilizando método de Monte Carlo. Congresso Brasileiro de Metrologia das Radiações Ionizantes. 2020.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Ariadny Thayla Machado, Guilherme Brilhante Guimarães, William de Souza Santos, Ana Paula Perini, Lucio Pereira Neves
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The submission of original articles to the Brazilian Journal of Medical Physics implies the transfer, by the authors, of the rights of print and digital publication. Copyright for published articles remains with the author, with journal rights on first publication. Authors may only use the same results in other publications by clearly indicating this journal as the original publisher. As we are an open access journal, free use of articles in educational, scientific, non-commercial applications is allowed, as long as the source is cited.
The Brazilian Journal of Medical Physics is under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).