Processamento e Análise de Imagens Médicas

Autores

  • Ana Maria Marques da Silva Núcleo de Pesquisa em Imagens Médicas PUCRS, Porto Alegre, RS http://orcid.org/0000-0002-5924-6852
  • Ana Cláudia Patrocínio Universidade Federal de Uberlândia, Centro de Ciências Exatas e Tecnologia, Faculdade de Engenharia Elétrica. Av. João de Ávila, 2121 Bloco 3N Santa Monica 38408100 - Uberlândia, MG http://orcid.org/0000-0001-9376-7689
  • Homero Schiabel Escola de Engenharia de São Carlos USP http://orcid.org/0000-0002-7014-948X

DOI:

https://doi.org/10.29384/rbfm.2019.v13.n1.p34-48

Palavras-chave:

imagens médicas, processamento de imagens, segmentação, auxílio computadorizado ao diagnóstico.

Resumo

Este artigo tem por objetivo apresentar uma abordagem conceitual sobre os principais aspectos envolvidos no processamento e na análise digital de imagens médicas, trazendo exemplos da aplicação na prática clínica e da pesquisa em imagens médicas. Para explorar a temática, o artigo está dividido em seções. A primeira seção apresenta os aspectos relacionados às diferenças entre a imagem adquirida no equipamento e a visualizada nos monitores, levantando alguns elementos relacionados à qualidade da aquisição. A seguir são descritas algumas técnicas de pré-processamento que permitem melhorar e destacar aspectos relevantes das imagens. A próxima seção apresenta os principais métodos de segmentação de objetos de interesse nas imagens. A seguir, duas seções descrevem como representar e descrever de forma quantitativa as características relevantes das imagens, para que elas possam ser analisadas computacionalmente, e os aspectos relativos à análise e ao reconhecimento de padrões em imagens. Finalmente, são apresentados alguns exemplos de esquemas de auxílio computadorizado ao diagnóstico.

Downloads

Não há dados estatísticos.

Referências

Evans AL. The evaluation of medical images. Bristol: Hilger; 1981.

Pisano ED, Yaffe MJ, Kuzmiak CM, eds. Digital mammography. Filadélfia: Lippincott Williams & Wilkins; 2004.

Borg M, Badr I, Royle G. Should processed or raw image data be used in mammographic image quality analyses? A comparative study of three full-field digital mammography systems. Radiat Prot Dosimetry. 2014;163(1):102-11. https://doi.org/10.1093/rpd/ncu046

Sinha GR, Neha A. Fuzzy based Image Enhancement Method. IJCA; 2015.

Yaffe MJ. Digital Mammography. In: Beutel J, Kundel HL, Van Metter RL (eds.). Handbook of Medical Imaging. Physics and Psychophysics. Bellingham: SPIE Press; 2000. v. 1. p. 329-372.

Dalmazo J, Elias Júnior J, Brocchi MAC, Costa PR, Azevedo-Marques PM. Otimização da dose em exames de rotina em tomografia computadorizada: estudo de viabilidade em um hospital universitário. Radiol Bras. 2010;43(4):241-8. http://dx.doi.org/10.1590/S0100-39842010000400008

Borges LR, Guerrero I, Bakic PR, Maidment ADA, Schiabel H, Vieira MAC. Simulation of dose reduction in digital breast tomosynthesis. In: 13th International Workshop on Breast Imaging; 2016; Malmö. Anais. 2016. p. 343-50. http://doi.org/10.1007/978-3-319-41546-8_43

Saunders Jr. RS, Baker JA, Delong DM, Johnson JP, Samei E. Does image quality matter? Impact of resolution and noise on mammographic task performance. Med Phys. 2007;34(10):3971-81. https://doi. org/10.1118/1.2776253

Knoll GF. Radiation detection and measurement. Nova York: John Wiley & Sons; 2010.

Leon-Garcia A. Probability, statistics, and random processes for electrical engineering. Upper Saddle River: Pearson; 2017.

Akila K, Jayashree LS, Vasuki A. Mammographic image enhancement using indirect contrast enhancement techniques–a comparative study. Proc Comp Scien. 2015;47:255-61. https://doi.org/10.1016/j.procs.2015.03.205

Wickerhauser V, Coifman RR, Meyer Y. Wavelet analysis and signal processing. In: Ruskai MB, Beylkin G, Coifman R, Daubechies I, Mallat S, Meyer Y, and Raphael L, editors. Wavelets and Their Applications. Boston: Jones and Bartlett; 1992.

Antonini M, Barlaud M, Mathieu P, Daubechies I. Image coding using wavelet transform. IEEE Trans Image Proc. 1992;1(2):205-20. https://doi. org/10.1109/83.136597

ChangRF,WuWJ,MoonWK,ChenDR.Automaticultrasoundsegmentation and morphology based diagnosis of solid breast tumors. Breast Cancer Res Treat. 2005;89(2):179-85. https://doi.org/10.1007/s10549-004-2043-z

Laine AF, Fan J, Schuler S. A framework for contrast enhancement by dyadic wavelet analysis. Nova York: Elsevier; 1994.

Heinlein P, Drexl J, Schneider W. Integrated wavelets for enhancement of microcalcifications in digital mammography. IEEE Trans Med Imag. 2003;22(3):402-13. https://doi.org/10.1109/TMI.2003.809632

Scharcanski J, Jung CR. Denoising and enhancing digital mammographic images for visual screening. Computerized Med Imag Graphics. 2006;30(4):243-54.https://doi.org/10.1016/j.compmedimag.2006.05.002

Pisano ED, Gatsonis C, Hendrick E, Yaffe M, Baum JK, Acharyya S, et al. Diagnostic Performance of Digital Versus Film Mammography For Breast- Cancer Screening. N Engl J Med. 2005;353(17):1773-83. https://doi. org/10.1056/NEJMoa052911

Pizer SM, Amburn EP, Austin JD, Cromartie R, Geselowitz A, Greer T, et al. Adaptive histogram equalization and its variations. Comput Gr Image Process. 1987;39(3):355-68. https://doi.org/10.1016/S0734- 189X(87)80186-X

Lu L, Zhou Y, Panetta K, Agaian S. Comparative study of histogram equalization algorithms for image enhancement. Mobile Multimedia/Image Processing, Security, and Applications. Baltimore: SPIE; 2010.

Sharma N, Aggarwal LM. Automated medical image segmentation techniques. J Med Phys. 2010;35(1):3-14. https://doi.org/10.4103/0971- 6203.58777

Canny J. A Computational Approach to Edge Detection. IEEE Trans Pattern Anal Mach Intell. 1986;8(6):679-98.

Rathnayaka K, Sahama T, Schuetz MA, Schmutz B. Effects of CT image segmentation methods on the accuracy of long bone 3D reconstructions. Med Eng Phys. 2011;33(2):226-33. https://doi.org/10.1016/j. medengphy.2010.10.002

Sonali P, Udipi VR. Preprocessing To Be Considered For MR and CT Images Containing Tumors. Retrieved. J Electrical Electron Eng Res [Internet]. 2012 [acessado em 10 ago. 2019;1(4):54-7. Disponível em: http://iosrjournals. org/iosr-jeee/Papers/vol1-issue4/G0145457.pdf?id=2706

Moy JP, Bosset B. How does real offset and gain correction affect the DQE in images from x-ray flat detectors? Med Imag. 1999;3659. https://doi. org/10.1117/12.349555

Mathias P, Neitzel U, Schaefer-Prokop C. Principles of image processing in digital chest radiography. J Thorac Imaging. 2003;18(3):148-64.

Pisano ED, Cole EB, Hemminger BM, Yaffe MJ, Aylward SR, Maidment AD, et al. Image processing algorithms for digital mammography: a pictorial essay. Radiographics. 2000;20(5):1479-91. https://doi.org/10.1148/ radiographics.20.5.g00se311479

Rangayyan RM. Biomedical image analysis. Biomedical engineering series. Londres: CRC Press; 2005.

Gonzalez RC, Woods RE. Processamento digital de imagens. 3a ed. São Paulo: Pearson Prentice Hall; 2010.

Pratt WK. Digital image processing. 4a ed. Hoboken: Wiley-Interscience; 2007.

Li BN, Chui CK, Chang S, Ong SH. A new unified level set method for semi- automatic liver tumor segmentation on contrast-enhanced CT images. Expert Systems Appl. 2012;39(10):9661-8. https://doi.org/10.1016/j. eswa.2012.02.095

Zidan A, Ghali NI, Hassanien AE, Hefny H, Hemanth J. Level set-based CT liver computer aided diagnosis system. Int J Imaging Robotics. 2012;9(1):26-36.

Cagnoni S, Dobrzeniecki AB, Poli R, Yanch JC. Genetic algorithm-based interactive segmentation of 3D medical images. Image Vision Comput. 1999;17(12):881-95. https://doi.org/10.1016/S0262-8856(98)00166-8

Ghosh P, Mitchell M. Segmentation of medical images using a genetic algorithm. In: Proceedings of the 8th annual conference on Genetic and evolutionary computation GECCO; 2006. p. 1171. https://doi. org/10.1145/1143997.1144183

Zhuo Z, Zhai W, Li X, Liu L, Tang J. Local adaptive segmentation algorithm for 3-D medical image based on robust feature statistics. Sci China Inf Sci. 2014;57(10):1-12. https://doi.org/10.1007/s11432-014-5095-7

Anastácio R, Thomaz RL, Macedo TAA, Patrocinio AC. Comparação entre técnicas para segmentação automática de fígado utilizando crescimento de região. Rev Bras Inovação Tecnológica em Saúde. 2015;5(4):1-12. https://doi.org/10.18816/r-bits.v5i4.7061

Kumar SS, Moni RS, Rajeesh J. Automatic Segmentation of Liver and Tumor for CAD of Liver. J Adv Inform Technol. 2011;2(1):63-70. https://doi. org/10.4304/jait.2.1.63-70

Oliveira DA, Feitosa RQ, Correia MM. Segmentation of liver, its vessels and lesions from CT images for surgical planning. BioMed Eng OnLine. 2011;10(1):30. https://doi.org/10.1186/1475-925X-10-30

Lim SJ, Jeong YY, Ho YS. Automatic liver segmentation for volume measurement in CT Images. J Vis Commun Image Rep. 2006;17(4):860-75. http://dx.doi.org/10.1016/j.jvcir.2005.07.001

Heimann T, Meinzer HP. Statistical shape models for 3D medical image segmentation: a review. Med Image Anal. 2009;13(4):543-63. https://doi. org/10.1016/j.media.2009.05.004

Rueda L, Mery D, Kittler J. Progress in Pattern Recognition Image Analysis and Applications. Berlim: Springer; 2007.

Roerdink JBTM, Meijster A. The Watershed Transform: Definitions, algorithms and Parallelization Strategies. Fundamenta Informaticae. 2001;41(1-2):187-228.

Haralick RM, Shanmugam K, Dinstein IH. Textural features for image classification. Systems, Man and Cybernetics. 1973;(6):610-21. https:// doi.org/10.1109/TSMC.1973.4309314

Haralick RM. Statistical and structural approaches to texture. Proceedings of the IEEE. 1979;67(5):786-804. https://doi.org/10.1109/ PROC.1979.11328

Zong X. Sub-octave Wavelet Representation and Applications for Medical Image Processing [tese]. Gainesville: University of Florida; 1997. 139 p.

Rubin RH. The effect of density variations on elemental abundance ratios in gaseous nebulae. Astrophys J Suppl Series. 1989;69:897-910.

Kononenko I. Machine learning for medical diagnosis: history, state of the art and perspective. Artif Intell Med. 2001;23(1):89-109.

Seeram E, Seeram D. Image postprocessing in digital radiology — a primer for technologists. J Med Imaging Radiat Sci. 2008;39(1):23-41. https://doi. org/10.1016/j.jmir.2008.01.004

Giger ML, Chan H-P, Boone J. History and status of CAD and quantitative image analysis: the role of Medical Physics and AAPM. Med Phys. 2008;35(12):5799-820. https://doi.org/10.1118/1.3013555

Hologic Image Checker Analog CAD [Internet]. Hologic Inc.; 2012 [acessado em 10 ago. 2019]. Disponível em: http://www.alpha-imaging. com/products/computeraideddiagnosis/hologic.prod/

Nishikawa RM. Computer-aided Detection and Diagnosis. In: Brick U, Diekmann F. Digital Mammography. Medical Radiology: Diagnostic Imaging and Radiation Oncology. Alemanha: Springer; 2010. p. 85-106.

Sohns C, Angic BC, Sossalla S, Konietschke F, Obenauer S. CAD in full- field digital mammography-influence of reader experience and application of CAD on interpretation of time. Clin Imaging. 2010;34(6):418-24. https:// doi.org/10.1016/j.clinimag.2009.10.039

Fenton JJ, Taplin SH, Carney PA, Abraham L, Sickles EA, D’Orsi C, et al. Influence of computer-aided detection on performance of screening mammography. New Eng J Med. 2007;356(14):1399-409. https://doi. org/10.1056/NEJMoa066099

Malich AA, Fischer DR, Böttcher J. CAD for mammography: the technique, results, current role and further developments. Eur Radiol. 2006;16(7):1449-60. https://doi.org/10.1007/s00330-005-0089-x

Karssemeijer N. Computer aided detection in breast imaging: more than a perception aid. In: 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro; 2010. Rotterdam; 2010. https://doi. org/10.1109/ISBI.2010.5490360.

Chen Y, Gale GA, Evanoff M. Does routine breast screening practice over- ride display quality in reporting enriched test sets? In: Proceedings of SPIE Medical Imaging; 2013; Orlando. Orlando; 2013;8673:86730V-1-9.

Nishikawa RM.Mammographic databases. Breast Dis.1998;10(3-4):137-50.

Ganesan K, Acharya UR, Chua CK, Min LC, Abraham KT, Ng KH. Computer-aided breast cancer detection using mammograms: a review. IEEE Rev Biomed Eng. 2013;6:77-98. https://doi.org/10.1109/ RBME.2012.2232289

Schiabel H, Martinez AC, Vieira MAC, Escarpinati MC. Evaluating the influence of image acquisition system quality on a mammographic images processing scheme. In: Proceedings of SCAR Annual Meeting; 2005; Orlando. Orlando; 2005. p. 90-1.

Nishikawa RM, Yarusso LM. Variations in measured performance of CAD schemes due to database composition and scoring protocol. In: SPIE Medical Imaging. Proceedings. 1998;3338:840-4.

Schiabel H, Nunes FL, Escarpinati MC, Benatti RH. Investigations on the effect of different characteristics of images sets on the performance of a processing scheme for microcalcifications detection in digital mammograms. J Digital Imaging. 2001;14(2 Supl. 1):224-5. https://doi. org/10.1007/bf03190347

Góes RF, Schiabel H, Sousa MAZ. Automatic scanning software based on the characteristic curve of mammograms digitizers. J Electronic Imaging. 2013;22(1):013024-1-9. https://doi.org/10.1117/1.JEI.22.1.013024

Angelo MF, Patrocínio AC, Schiabel H, Medeiros RB, Pires SR. Comparison of changes in intensity of digital and digitized mammograms using intensity features analysis. IEEE Eng Med Biol. 2008;27(3):74-81.

Romualdo LS, Vieira MA, Schiabel H, Mascarenhas ND, Borges LR. Mammographic image denoising and enhancement using the Anscombe transformation, adaptive Wiener filtering and the Modulation Transfer Function. J Digital Imaging. 2013;26(2):183-97. https://doi.org/10.1007/ s10278-012-9507-1

Downloads

Publicado

2019-09-01

Como Citar

Marques da Silva, A. M., Patrocínio, A. C., & Schiabel, H. (2019). Processamento e Análise de Imagens Médicas. Revista Brasileira De Física Médica, 13(1), 34–48. https://doi.org/10.29384/rbfm.2019.v13.n1.p34-48

Edição

Seção

Artigo de Revisão

Artigos mais lidos pelo mesmo(s) autor(es)

1 2 3 > >>