Unraveling the Mechanisms of Radiotherapy: Biological Pathways and Therapeutic Innovations

Autores

  • Silvina Odete Bustos Center for Translational Research in Oncology (LIM24), Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo. Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo 01246-000, Brazil
  • Renata Saito Center for Translational Research in Oncology
  • Wagner Henrique Marques Center for Translational Research in Oncology (LIM24), Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo. Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo 01246-000, Brazil https://orcid.org/0009-0006-9211-4575
  • Mara de Souza Junqueira Center for Translational Research in Oncology (LIM24), Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo. Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo 01246-000, Brazil https://orcid.org/0000-0002-2404-6543
  • Roger Chammas Center for Translational Research in Oncology (LIM24), Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo. Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo 01246-000, Brazil

DOI:

https://doi.org/10.29384/rbfm.2025.v19.19849001826

Palavras-chave:

Radiotherapy, radioresistance, radiotherapy response, cancer

Resumo

A radioterapia (RT) desempenha um papel fundamental na oncologia por ser uma das principais formas de tratamento para diversas neoplasias malignas. A RT utiliza princípios físicos, como a radiação ionizante, para danificar as células tumorais e inibir o crescimento tumoral. Avanços tecnológicos, como terapia de prótons, radioterapia com íons de carbono (CIRT) e radioterapia adaptativa (ART), aumentaram significativamente a precisão e a eficácia na entrega da radiação. No entanto, o efeito terapêutico da RT ainda é limitado por fatores como a heterogeneidade tumoral, toxicidade nos tecidos normais e a radiorresistência. Os efeitos biológicos da radiação, incluindo o dano ao DNA, parada do ciclo celular e apoptose, são influenciados por componentes do microambiente tumoral (TME) como a hipóxia, os quais contribuem para o desenvolvimento de resistência à RT. As nanopartículas tem se mostrado uma ferramenta promissora para superar essas limitações, através do direcionamento preciso da RT para a célula tumoral, aumentando a deposição local de radiação e modulando o TME. No entanto, questões relacionadas à biocompatibilidade e à toxicidade, especialmente em casos de exposições prolongadas, ainda precisam ser devidamente abordadas. Além disso, a integração da inteligência artificial (IA) e do machine learning (ML) no planejamento da radioterapia está revolucionando esta modalidade terapêutica. Essas tecnologias permitem uma delimitação mais precisa do tumor, planejamento personalizado do tratamento e a otimização das doses de radiação, melhorando os resultados terapêuticos. Para contornar a radiorresistência, terapias combinadas inovadoras que atuam simultaneamente nas células tumorais e no microambiente tumoral, associadas aos avanços em nanotecnologia e inteligência artificial, representam estratégias promissoras para potencializar a eficácia da RT e melhorar a sobrevivência dos pacientes.

Downloads

Não há dados estatísticos.

Referências

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209-49.

Krzyszczyk P, Acevedo A, Davidoff EJ, Timmins LM, Marrero-Berrios I, Patel M, et al. The growing role of precision and personalized medicine for cancer treatment. Technology (Singap World Sci). 2018;6(3-4):79-100.

Larionova I, Rakina M, Ivanyuk E, Trushchuk Y, Chernyshova A, Denisov E. Radiotherapy resistance: identifying universal biomarkers for various human cancers. J Cancer Res Clin Oncol. 2022;148(5):1015-31.

Vignard J, Mirey G, Salles B. Ionizing-radiation induced DNA double-strand breaks: a direct and indirect lighting up. Radiother Oncol. 2013;108(3):362-9.

Borrego-Soto G, Ortiz-López R, Rojas-Martínez A. Ionizing radiation-induced DNA injury and damage detection in patients with breast cancer. Genet Mol Biol. 2015;38(4):420-32.

agency Iae. Why is radiation therapy 2023 [Available from: https://www.iaea.org/newscenter/news/what-is-radiation-therapy#:~:text=Radiotherapy%20involves%20using%20carefully%20selected,almost%20all%20types%20of%20cancer.

Wang JS, Wang HJ, Qian HL. Biological effects of radiation on cancer cells. Mil Med Res. 2018;5(1):20.

Suit HD, Todoroki T. Rationale for combining surgery and radiation therapy. Cancer. 1985;55(9 Suppl):2246-9. Booker R. Palliative Radiation Therapy: The Role of Radiation Therapy in Palliative and End-of-Life Care. Clin J Oncol Nurs. 2022;26(6):628-35.

PRINCIPLES OF IONIZING RADIATION. (US) TPfIRAGAfTSaDR, editor1999.

Cunningham JR, Dance DR. Interactions of Radiation with Matter. Chapter 22014.

Mundt AJ RJ, Chung TD, et al. Physical Basis of Radiation Therapy: BC Decker ;; 2003

Measurements ICoRUa. Report 85: Fundamental quantities and units for ionizing radiation. J ICRU. 2011;11(1):1-31.

Materials NRCUCoEoEGfEtNOR. Evaluation of Guidelines for Exposures to Technologically Enhanced Naturally Occurring Radioactive Materials.

Appendix, Radiation Quantities and Units, Definitions, Acronyms.: National Academies Press; 1999.

LAWRENCE JH, TOBIAS CA, BORN JL, McCOMBS RK, ROBERTS JE, ANGER HO, et al. Pituitary irradiation with high-energy proton beams: a preliminary report. Cancer Res. 1958;18(2):121-34.

Durante M. Proton beam therapy in Europe: more centres need more research. Br J Cancer. 2019;120(8):777-8.

Mohan R, Grosshans D. Proton therapy - Present and future. Adv Drug Deliv Rev. 2017;109:26-44.

Ahmed SN. Physics and Engineering of Radiation Detection2015.

Byun HK, Han MC, Yang K, Kim JS, Yoo GS, Koom WS, et al. Physical and Biological Characteristics of Particle Therapy for Oncologists. Cancer Res Treat. 2021;53(3):611-20.

Helm A, Fournier C. High-LET charged particles: radiobiology and application for new approaches in radiotherapy. Strahlenther Onkol. 2023;199(12):1225-41.

Roobol SJ, van den Bent I, van Cappellen WA, Abraham TE, Paul MW, Kanaar R, et al. Comparison of High- and Low-LET Radiation-Induced DNA Double-Strand Break Processing in Living Cells. Int J Mol Sci. 2020;21(18).

Moreno AC, Frank SJ, Garden AS, Rosenthal DI, Fuller CD, Gunn GB, et al. Intensity modulated proton therapy (IMPT) - The future of IMRT for head and neck cancer. Oral Oncol. 2019;88:66-74.

Chen Z, Dominello MM, Joiner MC, Burmeister JW. Proton versus photon radiation therapy: A clinical review. Front Oncol. 2023;13:1133909.

Chua KLM, Chu PL, Tng DJH, Soo KC, Chua MLK. Repurposing Proton Beam Therapy through Novel Insights into Tumour Radioresistance. Clin Oncol (R Coll Radiol). 2021;33(11):e469-e81.

Paganetti H. Relative biological effectiveness (RBE) values for proton beam therapy. Variations as a function of biological endpoint, dose, and linear energy transfer. Phys Med Biol. 2014;59(22):R419-72.

Mizoe JE, Hasegawa A, Jingu K, Takagi R, Bessyo H, Morikawa T, et al. Results of carbon ion radiotherapy for head and neck cancer. Radiother Oncol. 2012;103(1):32-7.

Orlandi E, Barcellini A, Vischioni B, Fiore MR, Vitolo V, Iannalfi A, et al. The Role of Carbon Ion Therapy in the Changing Oncology Landscape-A Narrative Review of the Literature and the Decade of Carbon Ion Experience at the Italian National Center for Oncological Hadrontherapy. Cancers (Basel). 2023;15(20).

Koosha F, Ahmadikamalabadi M, Mohammadi M. Review of Recent Improvements in Carbon Ion Radiation Therapy in the Treatment of Glioblastoma. Adv Radiat Oncol. 2024;9(5):101465.

Koto M, Ikawa H, Inaniwa T, Imai R, Shinoto M, Takiyama H, et al. Dose-averaged LET optimized carbon-ion radiotherapy for head and neck cancers. Radiother Oncol. 2024;194:110180.

Brock KK. Adaptive Radiotherapy: Moving Into the Future. Semin Radiat Oncol. 2019;29(3):181-4.

Dona Lemus OM, Cao M, Cai B, Cummings M, Zheng D. Adaptive Radiotherapy: Next-Generation Radiotherapy. Cancers (Basel). 2024;16(6).

Glide-Hurst CK, Lee P, Yock AD, Olsen JR, Cao M, Siddiqui F, et al. Adaptive Radiation Therapy (ART) Strategies and Technical Considerations: A State of the ART Review From NRG Oncology. Int J Radiat Oncol Biol Phys. 2021;109(4):1054-75.

Sonke JJ, Aznar M, Rasch C. Adaptive Radiotherapy for Anatomical Changes. Semin Radiat Oncol. 2019;29(3):245-57.

Vozenin MC, Bourhis J, Durante M. Towards clinical translation of FLASH radiotherapy. Nat Rev Clin Oncol. 2022;19(12):791-803.

Vozenin MC, De Fornel P, Petersson K, Favaudon V, Jaccard M, Germond JF, et al. The Advantage of FLASH Radiotherapy Confirmed in Mini-pig and Cat-cancer Patients. Clin Cancer Res. 2019;25(1):35-42.

Kim YE, Gwak SH, Hong BJ, Oh JM, Choi HS, Kim MS, et al. Effects of Ultra-high doserate FLASH Irradiation on the Tumor Microenvironment in Lewis Lung Carcinoma: Role of Myosin Light Chain. Int J Radiat Oncol Biol Phys. 2021;109(5):1440-53.

Fouillade C, Curras-Alonso S, Giuranno L, Quelennec E, Heinrich S, Bonnet-Boissinot S, et al. FLASH Irradiation Spares Lung Progenitor Cells and Limits the Incidence of Radio-induced Senescence. Clin Cancer Res. 2020;26(6):1497-506.

Perstin A, Poirier Y, Sawant A, Tambasco M. Quantifying the DNA-damaging Effects of FLASH Irradiation With Plasmid DNA. Int J Radiat Oncol Biol Phys. 2022;113(2):437-47.

Allen BD, Acharya MM, Montay-Gruel P, Jorge PG, Bailat C, Petit B, et al. Maintenance of Tight Junction Integrity in the Absence of Vascular Dilation in the Brain of Mice Exposed to Ultra-High-Dose-Rate FLASH Irradiation. Radiat Res. 2020;194(6):625-35.

Simmons DA, Lartey FM, Schüler E, Rafat M, King G, Kim A, et al. Reduced cognitive deficits after FLASH irradiation of whole mouse brain are associated with less hippocampal dendritic spine loss and neuroinflammation. Radiother Oncol. 2019;139:4-10.

Iturri L, Bertho A, Lamirault C, Juchaux M, Gilbert C, Espenon J, et al. Proton FLASH Radiation Therapy and Immune Infiltration: Evaluation in an Orthotopic Glioma Rat Model. Int J Radiat Oncol Biol Phys. 2023;116(3):655-65.

Zhu H, Xie D, Wang Y, Huang R, Chen X, Yang Y, et al. Comparison of intratumor and local immune response between MV X-ray FLASH and conventional radiotherapies. Clin Transl Radiat Oncol. 2023;38:138-46.

Rama N, Saha T, Shukla S, Goda C, Milewski D, Mascia AE, et al. Improved Tumor Control Through T-cell Infiltration Modulated by Ultra-High Dose Rate Proton FLASH Using a Clinical Pencil Beam Scanning Proton System. International Journal of Radiation Oncology, Biology, Physics. 2019;105(1):S164-S5.

Favaudon V, Caplier L, Monceau V, Pouzoulet F, Sayarath M, Fouillade C, et al. Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice. Sci Transl Med. 2014;6(245):245ra93.

Buonanno M, Grilj V, Brenner DJ. Biological effects in normal cells exposed to FLASH dose rate protons. Radiother Oncol. 2019;139:51-5.

Mascia AE, Daugherty EC, Zhang Y, Lee E, Xiao Z, Sertorio M, et al. Proton FLASH Radiotherapy for the Treatment of Symptomatic Bone Metastases: The FAST-01 Nonrandomized Trial. JAMA Oncol. 2023;9(1):62-9.

Daugherty EC, Zhang Y, Xiao Z, Mascia AE, Sertorio M, Woo J, et al. FLASH radiotherapy for the treatment of symptomatic bone metastases in the thorax (FAST-02): protocol for a prospective study of a novel radiotherapy approach. Radiat Oncol. 2024;19(1):34.

Kinj R, Gaide O, Jeanneret-Sozzi W, Dafni U, Viguet-Carrin S, Sagittario E, et al. Randomized phase II selection trial of FLASH and conventional radiotherapy for patients with localized cutaneous squamous cell carcinoma or basal cell carcinoma: A study protocol. Clin Transl Radiat Oncol. 2024;45:100743.

Mohamed N LX, Lee NY. A narrative review of intensity-modulated proton therapy for head and neck cancer. Therapeutic Radiology and Oncology. 2023;;7:4.

Taku N, Wang L, Garden AS, Rosenthal DI, Gunn GB, Morrison WH, et al. Proton Therapy for HPV-Associated Oropharyngeal Cancers of the Head and Neck: a De-Intensification Strategy. Curr Treat Options Oncol. 2021;22(6):54.

Frank SJ, Busse P, Rosenthal DI, Hernandez M, Swanson DM, Garden AS, et al. Phase III randomized trial of intensity-modulated proton therapy (IMPT) versus intensity-modulated photon therapy (IMRT) for the treatment of head and neck oropharyngeal carcinoma (OPC). 2024 2024-06-01.

Lavrova E, Garrett MD, Wang YF, Chin C, Elliston C, Savacool M, et al. Adaptive Radiation Therapy: A Review of CT-based Techniques. Radiol Imaging Cancer. 2023;5(4):e230011.

Zhou S, Meng Y, Sun X, Jin Z, Feng W, Yang H. The critical components for effective adaptive radiotherapy in patients with unresectable non-small-cell lung cancer: who, when and how. Future Oncol. 2022;18(31):3551-62.

Li W, Wang L, Shen C, Xu T, Chu Y, Hu C. Radiation therapy-induced reactive oxygen species specifically eliminates CD19. Cancer Manag Res. 2019;11:6299-309.

Vanpouille-Box C, Alard A, Aryankalayil MJ, Sarfraz Y, Diamond JM, Schneider RJ, et al. DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. Nat Commun. 2017;8:15618.

Pouget JP, Georgakilas AG, Ravanat JL. Targeted and Off-Target (Bystander and Abscopal) Effects of Radiation Therapy: Redox Mechanisms and Risk/Benefit Analysis. Antioxid Redox Signal. 2018;29(15):1447-87.

Azzam EI, Jay-Gerin JP, Pain D. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett. 2012;327(1-2):48-60.

Cannan WJ, Pederson DS. Mechanisms and Consequences of Double-Strand DNA Break Formation in Chromatin. J Cell Physiol. 2016;231(1):3-14.

Olive PL. The role of DNA single- and double-strand breaks in cell killing by ionizing radiation. Radiat Res. 1998;150(5 Suppl):S42-51.

Fabbrizi MR, Parsons JL. Radiotherapy and the cellular DNA damage response: current and future perspectives on head and neck cancer treatment. Cancer Drug Resist. 2020;3(4):775-90.

Mahaney BL, Meek K, Lees-Miller SP. Repair of ionizing radiation-induced DNA double-strand breaks by non-homologous end-joining. Biochem J. 2009;417(3):639-50.

Shadyro OI, Yurkova IL, Kisel MA. Radiation-induced peroxidation and fragmentation of lipids in a model membrane. Int J Radiat Biol. 2002;78(3):211-7.

Bhosle SM, Pandey BN, Huilgol NG, Mishra KP. Membrane oxidative damage and apoptosis in cervical carcinoma cells of patients after radiation therapy. Methods Cell Sci. 2002;24(1-3):65-8.

Ariyoshi K, Miura T, Kasai K, Fujishima Y, Nakata A, Yoshida M. Radiation-Induced Bystander Effect is Mediated by Mitochondrial DNA in Exosome-Like Vesicles. Sci Rep. 2019;9(1):9103.

Pellegata NS, Antoniono RJ, Redpath JL, Stanbridge EJ. DNA damage and p53-mediated cell cycle arrest: a reevaluation. Proc Natl Acad Sci U S A. 1996;93(26):15209-14.

Khanna KK, Jackson SP. DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet. 2001;27(3):247-54.

TA. B. Mutation, Repair and Recombination.2002.

Stinson BM, Loparo JJ. Repair of DNA Double-Strand Breaks by the Nonhomologous End Joining Pathway. Annu Rev Biochem. 2021;90:137-64.

Mao Z, Bozzella M, Seluanov A, Gorbunova V. DNA repair by nonhomologous end joining and homologous recombination during cell cycle in human cells. Cell Cycle. 2008;7(18):2902-6.

Torgovnick A, Schumacher B. DNA repair mechanisms in cancer development and therapy. Front Genet. 2015;6:157.

Bohgaki T, Bohgaki M, Hakem R. DNA double-strand break signaling and human disorders. Genome Integr. 2010;1(1):15.

Cao L, Kawai H, Sasatani M, Iizuka D, Masuda Y, Inaba T, et al. A novel ATM/TP53/p21-mediated checkpoint only activated by chronic γ-irradiation. PLoS One. 2014;9(8):e104279.

Maya R, Balass M, Kim ST, Shkedy D, Leal JF, Shifman O, et al. ATM-dependent phosphorylation of Mdm2 on serine 395: role in p53 activation by DNA damage. Genes Dev. 2001;15(9):1067-77.

Falck J, Mailand N, Syljuåsen RG, Bartek J, Lukas J. The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature. 2001;410(6830):842-7.

Penninckx S, Pariset E, Cekanaviciute E, Costes SV. Quantification of radiation-induced DNA double strand break repair foci to evaluate and predict biological responses to ionizing radiation. NAR Cancer. 2021;3(4):zcab046.

Pawlik TM, Keyomarsi K. Role of cell cycle in mediating sensitivity to radiotherapy. Int J Radiat Oncol Biol Phys. 2004;59(4):928-42.

Liu L, Chen X, Li J, Wang H, Buehl CJ, Goff NJ, et al. Autophosphorylation transforms DNA-PK from protecting to processing DNA ends. Mol Cell. 2022;82(1):177-89.e4.

Ahmed A, Tait SWG. Targeting immunogenic cell death in cancer. Mol Oncol. 2020;14(12):2994-3006.

Baker S, Dahele M, Lagerwaard FJ, Senan S. A critical review of recent developments in radiotherapy for non-small cell lung cancer. Radiat Oncol. 2016;11(1):115.

Walle T, Martinez Monge R, Cerwenka A, Ajona D, Melero I, Lecanda F. Radiation effects on antitumor immune responses: current perspectives and challenges. Ther Adv Med Oncol. 2018;10:1758834017742575.

Schaue D, Micewicz ED, Ratikan JA, Xie MW, Cheng G, McBride WH. Radiation and inflammation. Semin Radiat Oncol. 2015;25(1):4-10.

Kennel KB, Bozlar M, De Valk AF, Greten FR. Cancer-Associated Fibroblasts in Inflammation and Antitumor Immunity. Clin Cancer Res. 2023;29(6):1009-16.

Wu Y, Song Y, Wang R, Wang T. Molecular mechanisms of tumor resistance to radiotherapy. Mol Cancer. 2023;22(1):96.

Bui BP, Nguyen PL, Lee K, Cho J. Hypoxia-Inducible Factor-1: A Novel Therapeutic Target for the Management of Cancer, Drug Resistance, and Cancer-Related Pain. Cancers (Basel). 2022;14(24).

Manuelli V, Pecorari C, Filomeni G, Zito E. Regulation of redox signaling in HIF-1-dependent tumor angiogenesis. FEBS J. 2022;289(18):5413-25.

Averbeck D, Rodriguez-Lafrasse C. Role of Mitochondria in Radiation Responses: Epigenetic, Metabolic, and Signaling Impacts. Int J Mol Sci. 2021;22(20).

Alfarouk KO, Verduzco D, Rauch C, Muddathir AK, Adil HH, Elhassan GO, et al. Glycolysis, tumor metabolism, cancer growth and dissemination. A new pH-based etiopathogenic perspective and therapeutic approach to an old cancer question. Oncoscience. 2014;1(12):777-802.

Liberti MV, Locasale JW. The Warburg Effect: How Does it Benefit Cancer Cells? Trends in Biochemical Sciences. 2016;41(3):211-8.

Avril D, Foy JP, Bouaoud J, Grégoire V, Saintigny P. Biomarkers of radioresistance in head and neck squamous cell carcinomas. Int J Radiat Biol. 2023;99(4):583-93.

Hauge S, Eek Mariampillai A, Rødland GE, Bay LTE, Landsverk HB, Syljuåsen RG. Expanding roles of cell cycle checkpoint inhibitors in radiation oncology. Int J Radiat Biol. 2023;99(6):941-50.

Hematulin A, Sagan D, Sawanyawisuth K, Seubwai W, Wongkham S. Association between cellular radiosensitivity and G1/G2 checkpoint proficiencies in human cholangiocarcinoma cell lines. Int J Oncol. 2014;45(3):1159-66.

Carlos-Reyes A, Muñiz-Lino MA, Romero-Garcia S, López-Camarillo C, Hernández-de la Cruz ON. Biological Adaptations of Tumor Cells to Radiation Therapy. Front Oncol. 2021;11:718636.

Hu J, Zhang Z, Zhao L, Li L, Zuo W, Han L. High expression of RAD51 promotes DNA damage repair and survival in KRAS-mutant lung cancer cells. BMB Rep. 2019;52(2):151-6.

King HO, Brend T, Payne HL, Wright A, Ward TA, Patel K, et al. RAD51 Is a Selective DNA Repair Target to Radiosensitize Glioma Stem Cells. Stem Cell Reports. 2017;8(1):125-39.

Bazan Russo TD, Mujacic C, Di Giovanni E, Vitale MC, Ferrante Bannera C, Randazzo U, et al. Polθ: emerging synthetic lethal partner in homologous recombination-deficient tumors. Cancer Gene Ther. 2024;31(11):1619-31.

Morgan MA, Lawrence TS. Molecular Pathways: Overcoming Radiation Resistance by Targeting DNA Damage Response Pathways. Clin Cancer Res. 2015;21(13):2898-904.

Bahar ME, Kim HJ, Kim DR. Targeting the RAS/RAF/MAPK pathway for cancer therapy: from mechanism to clinical studies. Signal Transduct Target Ther. 2023;8(1):455.

Liu X, Baer JM, Stone ML, Knolhoff BL, Hogg GD, Turner MC, et al. Stromal reprogramming overcomes resistance to RAS-MAPK inhibition to improve pancreas cancer responses to cytotoxic and immune therapy. Sci Transl Med. 2024;16(770):eado2402.

Su YC, Lee WC, Wang CC, Yeh SA, Chen WH, Chen PJ. Targeting PI3K/AKT/mTOR Signaling Pathway as a Radiosensitization in Head and Neck Squamous Cell Carcinomas. Int J Mol Sci. 2022;23(24).

Rascio F, Spadaccino F, Rocchetti MT, Castellano G, Stallone G, Netti GS, et al. The Pathogenic Role of PI3K/AKT Pathway in Cancer Onset and Drug Resistance: An Updated Review. Cancers (Basel). 2021;13(16).

Huang TT, Lampert EJ, Coots C, Lee JM. Targeting the PI3K pathway and DNA damage response as a therapeutic strategy in ovarian cancer. Cancer Treat Rev. 2020;86:102021.

Deng H, Chen Y, Li P, Hang Q, Zhang P, Jin Y, et al. PI3K/AKT/mTOR pathway, hypoxia, and glucose metabolism: Potential targets to overcome radioresistance in small cell lung cancer. Cancer Pathog Ther. 2023;1(1):56-66.

Su WY, Tian LY, Guo LP, Huang LQ, Gao WY. PI3K signaling-regulated metabolic reprogramming: From mechanism to application. Biochim Biophys Acta Rev Cancer. 2023;1878(5):188952.

Takeda T, Yamamoto Y, Tsubaki M, Matsuda T, Kimura A, Shimo N, et al. PI3K/Akt/YAP signaling promotes migration and invasion of DLD-1 colorectal cancer cells. Oncol Lett. 2022;23(4):106.

Kim J, Kang H, Son B, Kim MJ, Kang J, Park KH, et al. NRBF2-mediated autophagy contributes to metabolite replenishment and radioresistance in glioblastoma. Exp Mol Med. 2022;54(11):1872-85.

Suzuki M, Anko M, Ohara M, Matsumoto KI, Hasegawa S. Radiation-Induced Autophagy in Human Pancreatic Cancer Cells is Critically Dependent on G2 Checkpoint Activation: A Mechanism of Radioresistance in Pancreatic Cancer. Int J Radiat Oncol Biol Phys. 2021;111(1):260-71.

Kang H, Kim B, Park J, Youn H, Youn B. The Warburg effect on radioresistance: Survival beyond growth. Biochim Biophys Acta Rev Cancer. 2023;1878(6):188988.

Jiang X, Wang J, Deng X, Xiong F, Ge J, Xiang B, et al. Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape. Mol Cancer. 2019;18(1):10.

Zhang Z, Peng Y, Peng X, Xiao D, Shi Y, Tao Y. Effects of radiation therapy on tumor microenvironment: an updated review. Chin Med J (Engl). 2023;136(23):2802-11.

Leroi N, Lallemand F, Coucke P, Noel A, Martinive P. Impacts of Ionizing Radiation on the Different Compartments of the Tumor Microenvironment. Front Pharmacol. 2016;7:78.

Arnold KM, Flynn NJ, Raben A, Romak L, Yu Y, Dicker AP, et al. The Impact of Radiation on the Tumor Microenvironment: Effect of Dose and Fractionation Schedules. Cancer Growth Metastasis. 2018;11:1179064418761639.

Portella L, Scala S. Ionizing radiation effects on the tumor microenvironment. Semin Oncol. 2019;46(3):254-60.

Safa AR. Drug and apoptosis resistance in cancer stem cells: a puzzle with many pieces. Cancer Drug Resist. 2022;5(4):850-72.

Santos NL, Bustos SO, Bhatt D, Chammas R, Andrade LNS. Tumor-Derived Extracellular Vesicles: Modulation of Cellular Functional Dynamics in Tumor Microenvironment and Its Clinical Implications. Front Cell Dev Biol. 2021;9:737449.

Ripoll-Viladomiu I, Prina-Mello A, Movia D, Marignol L. Extracellular vesicles and the "six Rs" in radiotherapy. Cancer Treat Rev. 2024;129:102799.

Zhu C, Jiang X, Xiao H, Guan J. Tumor-derived extracellular vesicles inhibit HGF/c-Met and EGF/EGFR pathways to accelerate the radiosensitivity of nasopharyngeal carcinoma cells via microRNA-142-5p delivery. Cell Death Discov. 2022;8(1):17.

Yamana K, Inoue J, Yoshida R, Sakata J, Nakashima H, Arita H, et al. Extracellular vesicles derived from radioresistant oral squamous cell carcinoma cells contribute to the acquisition of radioresistance via the miR-503-3p-BAK axis. J Extracell Vesicles. 2021;10(14):e12169.

Li Y, Zhao L, Li XF. Hypoxia and the Tumor Microenvironment. Technol Cancer Res Treat. 2021;20:15330338211036304.

Barker HE, Paget JT, Khan AA, Harrington KJ. The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nat Rev Cancer. 2015;15(7):409-25.

Yoshimura M, Itasaka S, Harada H, Hiraoka M. Microenvironment and radiation therapy. Biomed Res Int. 2013;2013:685308.

Moeller BJ, Cao Y, Li CY, Dewhirst MW. Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules. Cancer Cell. 2004;5(5):429-41.

Harada H, Itasaka S, Zhu Y, Zeng L, Xie X, Morinibu A, et al. Treatment regimen determines whether an HIF-1 inhibitor enhances or inhibits the effect of radiation therapy. Br J Cancer. 2009;100(5):747-57.

Jarosz-Biej M, Smolarczyk R, Cichoń T, Kułach N. Tumor Microenvironment as A "Game Changer" in Cancer Radiotherapy. Int J Mol Sci. 2019;20(13).

Tang D, Chen X, Kang R, Kroemer G. Ferroptosis: molecular mechanisms and health implications. Cell Res. 2021;31(2):107-25.

Ye K, Chen Z, Xu Y. The double-edged functions of necroptosis. Cell Death Dis. 2023;14(2):163.

Song X, Sun Z, Li L, Zhou L, Yuan S. Application of nanomedicine in radiotherapy sensitization. Front Oncol. 2023;13:1088878.

Shen H, Huang H, Jiang Z. Nanoparticle-based radiosensitization strategies for improving radiation therapy. Front Pharmacol. 2023;14:1145551.

Roshani M, Rezaian-Isfahni A, Lotfalizadeh MH, Khassafi N, Abadi MHJN, Nejati M. Metal nanoparticles as a potential technique for the diagnosis and treatment of gastrointestinal cancer: a comprehensive review. Cancer Cell Int. 2023;23(1):280.

An X, Yu W, Liu J, Tang D, Yang L, Chen X. Oxidative cell death in cancer: mechanisms and therapeutic opportunities. Cell Death Dis. 2024;15(8):556.

Chen Y, Yang J, Fu S, Wu J. Gold Nanoparticles as Radiosensitizers in Cancer Radiotherapy. Int J Nanomedicine. 2020;15:9407-30.

Bromma K, Cicon L, Beckham W, Chithrani DB. Gold nanoparticle mediated radiation response among key cell components of the tumour microenvironment for the advancement of cancer nanotechnology. Sci Rep. 2020;10(1):12096.

Zhao J, Liu P, Ma J, Li D, Yang H, Chen W, et al. Enhancement of Radiosensitization by Silver Nanoparticles Functionalized with Polyethylene Glycol and Aptamer As1411 for Glioma Irradiation Therapy. Int J Nanomedicine. 2019;14:9483-96.

Liu Z, Tan H, Zhang X, Chen F, Zhou Z, Hu X, et al. Enhancement of radiotherapy efficacy by silver nanoparticles in hypoxic glioma cells. Artif Cells Nanomed Biotechnol. 2018;46(sup3):S922-S30.

Yang T, Yao Q, Cao F, Liu Q, Liu B, Wang XH. Silver nanoparticles inhibit the function of hypoxia-inducible factor-1 and target genes: insight into the cytotoxicity and antiangiogenesis. Int J Nanomedicine. 2016;11:6679-92.

Ajaykumar AP, Mathew A, Chandni AP, Varma SR, Jayaraj KN, Sabira O, et al. Green Synthesis of Silver Nanoparticles Using the Leaf Extract of the Medicinal Plant,. Antibiotics (Basel). 2023;12(3).

Battistel D, Baldi F, Gallo M, Faleri C, Daniele S. Characterisation of biosynthesised silver nanoparticles by scanning electrochemical microscopy (SECM) and voltammetry. Talanta. 2015;132:294-300.

Aghaei A, Shaterian, M., Danafar, H., Likozar, B., Šuligoj, A., & Gyergyek, S. The role of single-walled carbon nanotubes functionalized with gold to increase radiosensitivity of cancer cells to X-ray radiation . Applied Organometallic Chemistry. 2023;37 (11), Article e7265.

Hirn S, Semmler-Behnke M, Schleh C, Wenk A, Lipka J, Schäffler M, et al. Particle size-dependent and surface charge-dependent biodistribution of gold nanoparticles after intravenous administration. Eur J Pharm Biopharm. 2011;77(3):407-16.

Chen Q, Yuan L, Chou WC, Cheng YH, He C, Monteiro-Riviere NA, et al. Meta-Analysis of Nanoparticle Distribution in Tumors and Major Organs in Tumor-Bearing Mice. ACS Nano. 2023;17(20):19810-31.

Zein R, Sharrouf W, Selting K. Physical Properties of Nanoparticles That Result in Improved Cancer Targeting. J Oncol. 2020;2020:5194780.

Stolarz AJ, Chhetri BP, Borrelli MJ, Jenkins SV, Jamshidi-Parsian A, Phillips JH, et al. Liposome Formulation for Tumor-Targeted Drug Delivery Using Radiation Therapy. Int J Mol Sci. 2022;23(19).

Hamad I, Harb AA, Bustanji Y. Liposome-Based Drug Delivery Systems in Cancer Research: An Analysis of Global Landscape Efforts and Achievements. Pharmaceutics. 2024;16(3).

Zetrini AE, Abbasi AZ, He C, Lip H, Alradwan I, Rauth AM, et al. Targeting DNA damage repair mechanism by using RAD50-silencing siRNA nanoparticles to enhance radiotherapy in triple negative breast cancer. Mater Today Bio. 2024;28:101206.

Alves LN, Missailidis S, Lage CAS, DE Almeida CEB. Anti-MUC1 Aptamer as Carrier Tool of the Potential Radiosensitizer 1,10 Phenanthroline in MCF-7 Breast Cancer Cells. Anticancer Res. 2019;39(4):1859-67.

Zhang W, Li X, Zeng J, Wen X, Zhang C, Zhang Y, et al. Enhancing the sensitization of neuroblastoma to radiotherapy by the construction of a dual-channel parallel free radicals nanoamplifier. Mater Today Bio. 2023;23:100828.

Iranpour S, Bahrami AR, Dayyani M, Saljooghi AS, Matin MM. A potent multifunctional ZIF-8 nanoplatform developed for colorectal cancer therapy by triple-delivery of chemo/radio/targeted therapy agents. J Mater Chem B. 2024;12(4):1096-114.

Kan X, Ma J, Li D, Li F, Cao Y, Huang C, et al. Dual-targeted TfRA4-DNA1-Ag@AuNPs: An innovative radiosensitizer for enhancing radiotherapy in glioblastoma multiforme. Colloids Surf B Biointerfaces. 2025;245:114328.

Giordano FA, Layer JP, Leonardelli S, Friker LL, Turiello R, Corvino D, et al. L-RNA aptamer-based CXCL12 inhibition combined with radiotherapy in newly-diagnosed glioblastoma: dose escalation of the phase I/II GLORIA trial. Nat Commun. 2024;15(1):4210.

Ghahremani F, Kefayat A, Shahbazi-Gahrouei D, Motaghi H, Mehrgardi MA, Haghjooy-Javanmard S. AS1411 aptamer-targeted gold nanoclusters effect on the enhancement of radiation therapy efficacy in breast tumor-bearing mice. Nanomedicine (Lond). 2018;13(20):2563-78.

Ren X, Xue R, Luo Y, Wang S, Ge X, Yao X, et al. Programmable melanoma-targeted radio-immunotherapy via fusogenic liposomes functionalized with multivariate-gated aptamer assemblies. Nat Commun. 2024;15(1):5035.

He J, Ren X, Zhang Q, Wang S, Li Z, Cai K, et al. Nanoradiosentizers with X ray-actuatable supramolecular aptamer building units for programmable immunostimulatory T cell engagement. Biomaterials. 2024;315:122924.

Ausejo-Mauleon I, Martinez-Velez N, Lacalle A, de la Nava D, Cebollero J, Villanueva H, et al. Combination of locoregional radiotherapy with a TIM-3 aptamer improves survival in diffuse midline glioma models. JCI Insight. 2024;9(18).

Lin D, Lapen K, Sherer MV, Kantor J, Zhang Z, Boyce LM, et al. A Systematic Review of Contouring Guidelines in Radiation Oncology: Analysis of Frequency, Methodology, and Delivery of Consensus Recommendations. Int J Radiat Oncol Biol Phys. 2020;107(4):827-35.

Joskowicz L, Cohen D, Caplan N, Sosna J. Inter-observer variability of manual contour delineation of structures in CT. Eur Radiol. 2019;29(3):1391-9.

Vrtovec T, Močnik D, Strojan P, Pernuš F, Ibragimov B. Auto-segmentation of organs at risk for head and neck radiotherapy planning: From atlas-based to deep learning methods. Med Phys. 2020;47(9):e929-e50.

Li G, Wu X, Ma X. Artificial intelligence in radiotherapy. Semin Cancer Biol. 2022;86(Pt 2):160-71.

Lin L, Dou Q, Jin YM, Zhou GQ, Tang YQ, Chen WL, et al. Deep Learning for Automated Contouring of Primary Tumor Volumes by MRI for Nasopharyngeal Carcinoma. Radiology. 2019;291(3):677-86.

Byrne M, Archibald-Heeren B, Hu Y, Teh A, Beserminji R, Cai E, et al. Varian ethos online adaptive radiotherapy for prostate cancer: Early results of contouring accuracy, treatment plan quality, and treatment time. J Appl Clin Med Phys. 2022;23(1):e13479.

Elguindi S, Zelefsky MJ, Jiang J, Veeraraghavan H, Deasy JO, Hunt MA, et al. Deep learning-based auto-segmentation of targets and organs-at-risk for magnetic resonance imaging only planning of prostate radiotherapy. Phys Imaging Radiat Oncol. 2019;12:80-6.

Ruan D. Kernel density estimation-based real-time prediction for respiratory motion. Phys Med Biol. 2010;55(5):1311-26.

Zhou D, Nakamura M, Mukumoto N, Matsuo Y, Mizowaki T. Feasibility study of deep learning-based markerless real-time lung tumor tracking with orthogonal X-ray projection images. J Appl Clin Med Phys. 2023;24(4):e13894.

Downloads

Publicado

2025-09-25

Como Citar

Bustos, S. O., Saito, R., Marques, W. H., de Souza Junqueira, M., & Chammas, R. (2025). Unraveling the Mechanisms of Radiotherapy: Biological Pathways and Therapeutic Innovations. Revista Brasileira De Física Médica, 19, 826. https://doi.org/10.29384/rbfm.2025.v19.19849001826

Edição

Seção

Artigo de Revisão

Artigos Semelhantes

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.