Talking to the brain – An introduction to non-invasive brain stimulation techniques
DOI:
https://doi.org/10.29384/rbfm.2024.v18.19849001762Keywords:
Non-invasive brain stimulation, transcranial magnetic stimulation, transcranial electrical stimulation, low-intensity focused ultrasoundAbstract
Over time, various types of stimuli, such as visual, auditory, chemical, and physical, have been used to investigate neurological responses to decipher the mechanisms of brain function. Non-invasive brain stimulation techniques have been gaining popularity, both for their therapeutic potential for neurological disorders and as tools to enhance our understanding of the human brain. This review article aims to introduce three modalities of non-invasive brain stimulation: transcranial
magnetic stimulation, transcranial electrical stimulation, and low-intensity focused ultrasound. Methods commonly used for recording and analyzing brain responses provoked by these techniques are also discussed throughout the text. By exploring magnetic fields, electrical currents, and ultrasonic waves, these stimulation methods offer new perspectives for intervening in brain functions, standing out as tools with great potential for both scientific advances and clinical applications in brain manipulation.
Downloads
References
Lutzenberger W, Pulvermüller F, Elbert T, Birbaumer N. Visual stimulation alters local 40-Hz responses in humans: an EEG-study. Neurosci Lett. 1995 Jan 2;183(1):39–42.
Luke R, Larson E, Shader MJ, Innes-Brown H, Van Yper L, Lee AKC, et al. Analysis methods for measuring passive auditory fNIRS responses generated by a block-design paradigm. Neurophotonics. 2021 Apr;8(2):025008.
Sobel N, Prabhakaran V, Desmond JE, Glover GH, Sullivan EV, Gabrieli JDE. A method for functional magnetic resonance imaging of olfaction. J Neurosci Methods. 1997 Dec 30;78(1):115–23.
Garcia-Cossio E, Witkowski M, Robinson SE, Cohen LG, Birbaumer N, Soekadar SR. Simultaneous transcranial direct current stimulation (tDCS) and whole-head magnetoencephalography (MEG): assessing the impact of tDCS on slow cortical magnetic fields. NeuroImage. 2016 Oct 15;140:33–40.
Siebner HR, Hartwigsen G, Kassuba T, Rothwell J. How does transcranial magnetic stimulation modify neuronal activity in the brain? - Implications for studies of cognition. Cortex J Devoted Study Nerv Syst Behav. 2009 Oct;45(9):1035–42.
Kasuba KC, Buccino AP, Bartram J, Gaub BM, Fauser FJ, Ronchi S, et al. Mechanical stimulation and electrophysiological monitoring at subcellular resolution reveals differential mechanosensation of neurons within networks. Nat Nanotechnol. 2024 Feb 20;1–9.
Ziemann U, Lönnecker S, Steinhoff BJ, Paulus W. The effect of lorazepam on the motor cortical excitability in man. Exp Brain Res. 1996 Apr 1;109(1):127–35.
Jessen KR. Glial cells. Int J Biochem Cell Biol. 2004 Oct 1;36(10):1861–7.
Kandel ER, Koester J, Mack S, Siegelbaum S, editors. Principles of neural science. Sixth edition. New York: McGraw Hill; 2021. 1646 p.
Perlmutter JS, Mink JW. Deep Brain Stimulation. Annu Rev Neurosci. 2006;29(1):229–57.
Singh A, Kar SK. How Electroconvulsive Therapy Works?: Understanding the Neurobiological Mechanisms. Clin Psychopharmacol Neurosci. 2017 Aug;15(3):210–21.
Rakic P. Evolution of the neocortex: a perspective from developmental biology. Nat Rev Neurosci. 2009 Oct;10(10):724–35.
Rossini PM, Burke D, Chen R, Cohen LG, Daskalakis Z, Di Iorio R, et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin Neurophysiol Off J Int Fed Clin Neurophysiol. 2015 Jun;126(6):1071–107.
Matsuda RH, Tardelli GP, Guimarães CO, Souza VH, Filho OB. Estimulação magnética transcraniana: uma breve revisão dos princípios e aplicações. Rev Bras Física Médica. 2019 Sep 1;13(1):49–56.
Ruohonen J. Basic Physics and Design of Transcranial Magnetic Stimulation Devices and Coils. In: Magnetic Stimulation in Clinical Neurophysiology. 2005. p. 17–30.
Di Lazzaro V, Rothwell JC. Corticospinal activity evoked and modulated by non-invasive stimulation of the intact human motor cortex. J Physiol. 2014 Oct 1;592(Pt 19):4115–28.
Barker AT, Jalinous R, Freeston IL. Non-invasive magnetic stimulation of human motor cortex. Lancet Lond Engl. 1985 May 11;1(8437):1106–7.
Garcia MAC, Souza VH, Lindolfo-Almas J, Matsuda RH, Nogueira-Campos AA. Motor potential evoked by transcranial magnetic stimulation depends on the placement protocol of recording electrodes: a pilot study. Biomed Phys Eng Express. 2020 Jun 12;6(4):047003.
Garcia MAC, Souza VH, Vargas CD. Can the Recording of Motor Potentials Evoked by Transcranial Magnetic Stimulation Be Optimized? Front Hum Neurosci [Internet]. 2017 Aug 15 [cited 2024 Mar 11];11. Available from: https://www.frontiersin.org/articles/10.3389/fnhum.2017.00413
Sondergaard RE, Martino D, Kiss ZHT, Condliffe EG. TMS Motor Mapping Methodology and Reliability: A Structured Review. Front Neurosci [Internet]. 2021 Aug 19 [cited 2024 Mar 11];15. Available from: https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2021.709368/full
Raffa G, Scibilia A, Conti A, Ricciardo G, Rizzo V, Morelli A, et al. The role of navigated transcranial magnetic stimulation for surgery of motor-eloquent brain tumors: a systematic review and meta-analysis. Clin Neurol Neurosurg. 2019 May 1;180:7–17.
Paulus W, Classen J, Cohen LG, Large CH, Di Lazzaro V, Nitsche M, et al. State of the art: Pharmacologic effects on cortical excitability measures tested by transcranial magnetic stimulation. Brain Stimulat. 2008 Jul 1;1(3):151–63.
Tardelli GP, Souza VH, Matsuda RH, Garcia MAC, Novikov PA, Nazarova MA, et al. Forearm and Hand Muscles Exhibit High Coactivation and Overlapping of Cortical Motor Representations. Brain Topogr. 2022;35(3):322–36.
Ziemann U, Paulus W, Nitsche MA, Pascual-Leone A, Byblow WD, Berardelli A, et al. Consensus: Motor cortex plasticity protocols. Brain Stimulat. 2008 Jul 1;1(3):164–82.
Gross M, Nakamura L, Pascual-Leone A, Fregni F. Has repetitive transcranial magnetic stimulation (rTMS) treatment for depression improved? A systematic review and meta-analysis comparing the recent vs. the earlier rTMS studies. Acta Psychiatr Scand. 2007;116(3):165–73.
Klein E, Kreinin I, Chistyakov A, Koren D, Mecz L, Marmur S, et al. Therapeutic efficacy of right prefrontal slow repetitive transcranial magnetic stimulation in major depression: a double-blind controlled study. Arch Gen Psychiatry. 1999 Apr;56(4):315–20.
Luber B, McClintock SM, Lisanby SH. Applications of transcranial magnetic stimulation and magnetic seizure therapy in the study and treatment of disorders related to cerebral aging. Dialogues Clin Neurosci. 2013 Mar;15(1):87–98.
Rawji V, Latorre A, Sharma N, Rothwell JC, Rocchi L. On the Use of TMS to Investigate the Pathophysiology of Neurodegenerative Diseases. Front Neurol. 2020 Nov 3;11:584664.
Daneshzand M, Makarov SN, de Lara LIN, Guerin B, McNab J, Rosen BR, et al. Rapid computation of TMS-induced E-fields using a dipole-based magnetic stimulation profile approach. NeuroImage. 2021 Aug 15;237:118097.
Roth Y, Amir A, Levkovitz Y, Zangen A. Three-Dimensional Distribution of the Electric Field Induced in the Brain by Transcranial Magnetic Stimulation Using Figure-8 and Deep H-Coils. J Clin Neurophysiol. 2007 Feb;24(1):31.
Deng ZD, Lisanby SH, Peterchev AV. Electric field depth–focality tradeoff in transcranial magnetic stimulation: simulation comparison of 50 coil designs. Brain Stimulat. 2013 Jan;6(1):1–13.
Luber B, Davis SW, Deng ZD, Murphy D, Martella A, Peterchev AV, et al. Using diffusion tensor imaging to effectively target TMS to deep brain structures. NeuroImage. 2022 Apr 1;249:118863.
Bolognini N, Ro T. Transcranial Magnetic Stimulation: Disrupting Neural Activity to Alter and Assess Brain Function. J Neurosci. 2010 Jul 21;30(29):9647–50.
Conforto AB, Z’Graggen WJ, Kohl AS, Rösler KM, Kaelin-Lang A. Impact of coil position and electrophysiological monitoring on determination of motor thresholds to transcranial magnetic stimulation. Clin Neurophysiol Off J Int Fed Clin Neurophysiol. 2004 Apr;115(4):812–9.
Souza VH, Matsuda RH, Peres ASC, Amorim PHJ, Moraes TF, Silva JVL, et al. Development and characterization of the InVesalius Navigator software for navigated transcranial magnetic stimulation. J Neurosci Methods. 2018 Nov 1;309:109–20.
Bestmann S, Baudewig J, Siebner HR, Rothwell JC, Frahm J. Functional MRI of the immediate impact of transcranial magnetic stimulation on cortical and subcortical motor circuits. Eur J Neurosci. 2004 Apr;19(7):1950–62.
Hawco C, Voineskos AN, Steeves JKE, Dickie EW, Viviano JD, Downar J, et al. Spread of activity following TMS is related to intrinsic resting connectivity to the salience network: A concurrent TMS-fMRI study. Cortex J Devoted Study Nerv Syst Behav. 2018 Nov;108:160–72.
Koponen LM, Nieminen JO, Ilmoniemi RJ. Multi-locus transcranial magnetic stimulation—theory and implementation. Brain Stimulat. 2018 Jul 1;11(4):849–55.
Souza VH, Nieminen JO, Tugin S, Koponen LM, Baffa O, Ilmoniemi RJ. TMS with fast and accurate electronic control: Measuring the orientation sensitivity of corticomotor pathways. Brain Stimul Basic Transl Clin Res Neuromodulation. 2022 Mar 1;15(2):306–15.
Nieminen JO, Sinisalo H, Souza VH, Malmi M, Yuryev M, Tervo AE, et al. Multi-locus transcranial magnetic stimulation system for electronically targeted brain stimulation. Brain Stimulat. 2022 Jan 1;15(1):116–24.
Matsuda R, Souza VH, Marchetti T, Araki V, Caurin G, Machado H, et al. An open-source platform for robotized transcranial magnetic stimulation. Brain Stimulat. 2021 Nov 1;14:1659.
Matsuda RenanH, Souza VH, Marchetti TC, Soto AM, Kahilakoski OP, Zhdanov A, et al. Robotic–electronic platform for autonomous and accurate transcranial magnetic stimulation targeting. Brain Stimulat [Internet]. 2024 Apr 4 [cited 2024 Apr 9]; Available from: https://www.sciencedirect.com/science/article/pii/S1935861X24000585.
Reed T, Cohen Kadosh R. Transcranial electrical stimulation (tES) mechanisms and its effects on cortical excitability and connectivity. J Inherit Metab Dis. 2018;41(6):1123–30.
Zhao H, Qiao L, Fan D, Zhang S, Turel O, Li Y, et al. Modulation of Brain Activity with Noninvasive Transcranial Direct Current Stimulation (tDCS): Clinical Applications and Safety Concerns. Front Psychol. 2017;8:685.
Arul-Anandam AP, Loo C. Transcranial direct current stimulation: a new tool for the treatment of depression? J Affect Disord. 2009 Oct;117(3):137–45.
Paulus W. Transcranial electrical stimulation (tES - tDCS; tRNS, tACS) methods. Neuropsychol Rehabil. 2011 Oct;21(5):602–17.
Priori A, Berardelli A, Rona S, Accornero N, Manfredi M. Polarization of the human motor cortex through the scalp. Neuroreport. 1998 Jul 13;9(10):2257–60.
Sreeraj VS, Arumugham SS, Venkatasubramanian G. Clinical Practice Guidelines for the Use of Transcranial Direct Current Stimulation in Psychiatry. Indian J Psychiatry. 2023 Feb;65(2):289–96.
Vestito L, Rosellini S, Mantero M, Bandini F. Long-term effects of transcranial direct-current stimulation in chronic post-stroke aphasia: a pilot study. Front Hum Neurosci. 2014;8:785.
Nitsche MA, Fricke K, Henschke U, Schlitterlau A, Liebetanz D, Lang N, et al. Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. J Physiol. 2003 Nov 15;553(Pt 1):293–301.
Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000 Sep 15;527(Pt 3):633–9.
Thair H, Holloway AL, Newport R, Smith AD. Transcranial Direct Current Stimulation (tDCS): A Beginner’s Guide for Design and Implementation. Front Neurosci. 2017 Nov 22;11:641.
Elsner B, Kugler J, Pohl M, Mehrholz J. Transcranial direct current stimulation (tDCS) for improving activities of daily living, and physical and cognitive functioning, in people after stroke. Cochrane Database Syst Rev [Internet]. 2020 [cited 2024 Mar 22];(11). Available from: https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD009645.pub4/full
Antal A, Paulus W. Transcranial alternating current stimulation (tACS). Front Hum Neurosci [Internet]. 2013 Jun 28 [cited 2024 Mar 8];7. Available from: https://www.frontiersin.org/articles/10.3389/fnhum.2013.00317.
Moliadze V, Atalay D, Antal A, Paulus W. Close to threshold transcranial electrical stimulation preferentially activates inhibitory networks before switching to excitation with higher intensities. Brain Stimulat. 2012 Oct;5(4):505–11.
Herrmann CS, Rach S, Neuling T, Strüber D. Transcranial alternating current stimulation: a review of the underlying mechanisms and modulation of cognitive processes. Front Hum Neurosci [Internet]. 2013 Jun 14 [cited 2024 Mar 8];7. Available from: https://www.frontiersin.org/articles/10.3389/fnhum.2013.00279
Campana G, Camilleri R, Moret B, Ghin F, Pavan A. Opposite effects of high- and low-frequency transcranial random noise stimulation probed with visual motion adaptation. Sci Rep. 2016 Dec 9;6(1):38919.
van der Groen O, Potok W, Wenderoth N, Edwards G, Mattingley JB, Edwards D. Using noise for the better: The effects of transcranial random noise stimulation on the brain and behavior. Neurosci Biobehav Rev. 2022 Jul 1;138:104702.
Elsner B, Kugler J, Mehrholz J. Transcranial direct current stimulation (tDCS) for improving aphasia after stroke: a systematic review with network meta-analysis of randomized controlled trials. J NeuroEngineering Rehabil. 2020 Jul 8;17(1):88.
Sudbrack-Oliveira P, Barbosa MZ, Thome-Souza S, Razza LB, Gallucci-Neto J, da Costa Lane Valiengo L, et al. Transcranial direct current stimulation (tDCS) in the management of epilepsy: A systematic review. Seizure. 2021 Mar;86:85–95.
Pinto CB, Costa BT, Duarte D, Fregni F. Transcranial Direct Current Stimulation as a Therapeutic Tool for Chronic Pain. J ECT. 2018 Sep;34(3):e36–50.
Elsner B, Kugler J, Mehrholz J. Transcranial direct current stimulation (tDCS) for upper limb rehabilitation after stroke: future directions. J NeuroEngineering Rehabil. 2018 Nov 15;15(1):106.
Fregni F, Boggio PS, Nitsche MA, Marcolin MA, Rigonatti SP, Pascual-Leone A. Treatment of major depression with transcranial direct current stimulation. Bipolar Disord. 2006 Apr;8(2):203–4.
Jensen JA. Medical ultrasound imaging. Prog Biophys Mol Biol. 2007 Jan 1;93(1):153–65.
Elhelf IAS, Albahar H, Shah U, Oto A, Cressman E, Almekkawy M. High intensity focused ultrasound: The fundamentals, clinical applications and research trends. Diagn Interv Imaging. 2018 Jun;99(6):349–59.
Zhou Q, Lam KH, Zheng H, Qiu W, Shung KK. Piezoelectric single crystals for ultrasonic transducers in biomedical applications. Prog Mater Sci. 2014 Oct 1;66:87–111.
Ter Haar GR. High Intensity Focused Ultrasound for the Treatment of Tumors. Echocardiography. 2001;18(4):317–22.
Haar GT, Coussios C. High intensity focused ultrasound: physical principles and devices. Int J Hyperth Off J Eur Soc Hyperthermic Oncol North Am Hyperth Group. 2007 Mar;23(2):89–104.
Elias WJ, Lipsman N, Ondo WG, Ghanouni P, Kim YG, Lee W, et al. A Randomized Trial of Focused Ultrasound Thalamotomy for Essential Tremor. N Engl J Med. 2016 Aug 25;375(8):730–9.
Bauer R, Martin E, Haegele-Link S, Kaegi G, von Specht M, Werner B. Noninvasive functional neurosurgery using transcranial MR imaging-guided focused ultrasound. Parkinsonism Relat Disord. 2014 Jan;20 Suppl 1:S197-199.
Rezayat E, Toostani IG. A Review on Brain Stimulation Using Low Intensity Focused Ultrasound. Basic Clin Neurosci. 2016 Jul;7(3):187–94.
Arulpragasam AR, van ’t Wout-Frank M, Barredo J, Faucher CR, Greenberg BD, Philip NS. Low Intensity Focused Ultrasound for Non-invasive and Reversible Deep Brain Neuromodulation-A Paradigm Shift in Psychiatric Research. Front Psychiatry. 2022;13:825802.
Legon W, Bansal P, Tyshynsky R, Ai L, Mueller JK. Transcranial focused ultrasound neuromodulation of the human primary motor cortex. Sci Rep. 2018 Jul 3;8(1):10007.
Mueller J, Legon W, Opitz A, Sato TF, Tyler WJ. Transcranial Focused Ultrasound Modulates Intrinsic and Evoked EEG Dynamics. Brain Stimulat. 2014 Nov 1;7(6):900–8.
Burgess A, Nhan T, Moffatt C, Klibanov AL, Hynynen K. Analysis of focused ultrasound-induced blood–brain barrier permeability in a mouse model of Alzheimer’s disease using two-photon microscopy. J Controlled Release. 2014 Oct 28;192:243–8.
Conti A, Kamimura HAS, Novell A, Duggento A, Toschi N. Magnetic Resonance Methods for Focused Ultrasound-Induced Blood-Brain Barrier Opening. Front Phys [Internet]. 2020 Sep 30 [cited 2024 Mar 25];8. Available from: https://www.frontiersin.org/articles/10.3389/fphy.2020.547674.
Daneman R, Prat A. The Blood–Brain Barrier. Cold Spring Harb Perspect Biol. 2015 Jan 1;7(1):a020412.
Yoo SS, Bystritsky A, Lee JH, Zhang Y, Fischer K, Min BK, et al. Focused ultrasound modulates region-specific brain activity. NeuroImage. 2011 Jun 1;56(3):1267–75.
Baek H, Pahk KJ, Kim H. A review of low-intensity focused ultrasound for neuromodulation. Biomed Eng Lett. 2017 Jan 9;7(2):135–42.
Meng Y, MacIntosh BJ, Shirzadi Z, Kiss A, Bethune A, Heyn C, et al. Resting state functional connectivity changes after MR-guided focused ultrasound mediated blood-brain barrier opening in patients with Alzheimer’s disease. NeuroImage. 2019 Oct 15;200:275–80.
Legon W, Ai L, Bansal P, Mueller JK. Neuromodulation with single-element transcranial focused ultrasound in human thalamus. Hum Brain Mapp. 2018;39(5):1995–2006.
Min BK, Hämäläinen MS, Pantazis D. New Cognitive Neurotechnology Facilitates Studies of Cortical–Subcortical Interactions. Trends Biotechnol. 2020 Sep 1;38(9):952–62.
Light GA, Williams LE, Minow F, Sprock J, Rissling A, Sharp R, et al. Electroencephalography (EEG) and Event-Related Potentials (ERP’s) with Human Participants. Curr Protoc Neurosci Editor Board Jacqueline N Crawley Al. 2010 Jul;CHAPTER:Unit-6.2524.
Michel CM, Brunet D. EEG Source Imaging: A Practical Review of the Analysis Steps. Front Neurol. 2019;10:325.
Ilmoniemi RJ, Virtanen J, Ruohonen J, Karhu J, Aronen HJ, Näätänen R, et al. Neuronal responses to magnetic stimulation reveal cortical reactivity and connectivity. NeuroReport. 1997 Nov 10;8(16):3537.
Cao KX, Ma ML, Wang CZ, Iqbal J, Si JJ, Xue YX, et al. TMS-EEG: An emerging tool to study the neurophysiologic biomarkers of psychiatric disorders. Neuropharmacology. 2021 Oct 1;197:108574.
Tremblay S, Rogasch NC, Premoli I, Blumberger DM, Casarotto S, Chen R, et al. Clinical utility and prospective of TMS–EEG. Clin Neurophysiol. 2019 May 1;130(5):802–44.
Rogasch NC, Biabani M, Mutanen TP. Designing and comparing cleaning pipelines for TMS-EEG data: A theoretical overview and practical example. J Neurosci Methods. 2022 Apr 1;371:109494.
Singh SP. Magnetoencephalography: Basic principles. Ann Indian Acad Neurol. 2014 Mar;17(Suppl 1):S107–12.
Vesanen PT, Nieminen JO, Zevenhoven KCJ, Dabek J, Parkkonen LT, Zhdanov AV, et al. Hybrid ultra-low-field MRI and magnetoencephalography system based on a commercial whole-head neuromagnetometer. Magn Reson Med. 2013 Jun;69(6):1795–804.
Gore JC. Principles and practice of functional MRI of the human brain. J Clin Invest. 2003 Jul 1;112(1):4–9.
Glover GH. Overview of functional magnetic resonance imaging. Neurosurg Clin N Am. 2011 Apr;22(2):133–9, vii.
Nayfeh M, Ahmed AI, Saad JM, Alahdab F, Al-Mallah M. The Role of Cardiac PET in Diagnosis and Prognosis of Ischemic Heart Disease: Optimal Modality Across Different Patient Populations. Curr Atheroscler Rep. 2023 May 10;1–7.
Foster NL, Heidebrink JL, Clark CM, Jagust WJ, Arnold SE, Barbas NR, et al. FDG-PET improves accuracy in distinguishing frontotemporal dementia and Alzheimer’s disease. Brain J Neurol. 2007 Oct;130(Pt 10):2616–35.
Rinne JO. Positron emission tomography in the differential diagnosis of parkinsonism. J Mov Disord. 2009 Oct;2(2):53–7.
Kreisl WC, Kim MJ, Coughlin JM, Henter ID, Owen DR, Innis RB. PET imaging of neuroinflammation in neurological disorders. Lancet Neurol. 2020 Nov;19(11):940–50.
Davis KM, Ryan JL, Aaron VD, Sims JB. PET and SPECT Imaging of the Brain: History, Technical Considerations, Applications, and Radiotracers. Semin Ultrasound CT MRI. 2020 Dec 1;41(6):521–9.
Tai YF, Piccini P. Applications of positron emission tomography (PET) in neurology. J Neurol Neurosurg Psychiatry. 2004 May;75(5):669–76.
Lima A, Bakker J. Espectroscopia no infravermelho próximo para a monitorização da perfusão tecidual. Rev Bras Ter Intensiva. 2011;341–51.
Chen WL, Wagner J, Heugel N, Sugar J, Lee YW, Conant L, et al. Functional Near-Infrared Spectroscopy and Its Clinical Application in the Field of Neuroscience: Advances and Future Directions. Front Neurosci. 2020;14:724.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Thais Cunha Marchetti, Renan Hiroshi Matsuda, Victor Hugo Souza, Antonio Carlos Roque da Silva Filho, Oswaldo Baffa
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The submission of original articles to the Brazilian Journal of Medical Physics implies the transfer, by the authors, of the rights of print and digital publication. Copyright for published articles remains with the author, with journal rights on first publication. Authors may only use the same results in other publications by clearly indicating this journal as the original publisher. As we are an open access journal, free use of articles in educational, scientific, non-commercial applications is allowed, as long as the source is cited.
The Brazilian Journal of Medical Physics is under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).