Sistema simples com eletrodos capacitivos para monitoramento da frequência cardíaca através de contato indireto

Autores

  • Lucas Bertinetti Lopes Programa de Pós-Graduação em Engenharia Elétrica - PPGEEL , Universidade Federal de Santa Catarina (UFSC)
  • Mateus Gomes Lucas Instituto de Engenharia Biomédica (IEB-UFSC), Programa de Pós-Graduação em Engenharia Elétrica - PPGEEL , Universidade Federal de Santa Catarina (UFSC)
  • Kauã Minho Antunez Programa de Pós-Graduação em Engenharia Elétrica - PPGEE , Universidade Federal do Rio Grande do Sul. Escola de Engenharia
  • Adão Antonio de Souza Jr. Instituto Federal Sul-rio-grandense http://orcid.org/0000-0002-1893-9468
  • Carlos Mendes Richter Laboratório de Aplicação/Biomédica da Engenharia Elétrica – LABEE, Engenharia Elétrica, Instituto Federal Sul-rio-grandense (IFSul)
  • Mauricio Campelo Tavares Contronic Sistemas Automáticos Ltda

DOI:

https://doi.org/10.29384/rbfm.2019.v13.n2.p47-52

Palavras-chave:

bioeletricidade, sistemas embarcados, eletrocardiograma, eletrodos capacitivos

Resumo

O monitoramento contínuo do eletrocardiograma (ECG) permite um melhor entendimento da saúde cardíaca dos pacientes, a detecção precoce de patologias e um rápido alerta emergencial em condições agudas. Entretanto, essa prática normalmente está associada ao uso de eletrodos adesivos e holters, que a longo prazo podem causar irritações e reações alérgicas na pele, além de desconforto ao paciente. Este trabalho apresenta um sistema embarcado para aquisição de ECG multicanal e monitoramento da frequência cardíaca, usando eletrodos capacitivos projetados para operar sem gel e sem contato direto com a pele do paciente. Quatro eletrodos foram fixados em linha sobre um colchonete, para monitoramento do paciente em decúbito. Assim que o paciente se deita sobre o colchonete, o ECG é medido através das roupas e sem nenhuma preparação. O objetivo é desenvolver uma ferramenta de saúde ubíqua para o monitoramento residencial e hospitalar, que ofereça segurança e conforto aos pacientes. Resultados em paciente eletrônico mostram correlação de 90,8% entre o sinal de ECG gerado e o medido. Resultados experimentais em voluntários mostram um erro percentual de frequência cardíaca de até 2,3% para decúbito ventral e 6,8% para decúbito dorsal, em relação a valores obtidos simultaneamente usando um oxímetro digital

Downloads

Não há dados estatísticos.

Biografia do Autor

Adão Antonio de Souza Jr., Instituto Federal Sul-rio-grandense

Professor Titular do Curso de Graduação em Engenharia Elétrica. Area de Processamento de Sinais, Telecomunicações e Biomédica.

Referências

Nicolau JC, Polanczyk CA., Pinho JA, Bacellar MSC, Ribeiro DGL, Darwich RN et al. Diretriz de interpretação de eletrocardiograma de repouso. Arq Bras Cardiol 2003; 80:1-18.

Marques JLB, George E, Peacey SR, Harris ND, Macdonald IA, Cochrane T et al. Altered ventricular repolarization during hypoglycaemia in patients with diabetes. Diabet Med. 1997; 14(8):648-654.

Harris ND, Ireland RH, Marques JLB, Hudson S, Davies C, Lee S et al. Can changes in QT interval be used to predict the onset of hypoglycemia in type 1 diabetes?. Comput Cardiol. 2000; 27.

Ponnusamy A, Marques JLB, Reuber M. Heart rate variability measures as biomarkers in patients with psychogenic nonepileptic seizures: Potential and limitations. Epilepsy Behav. 2011; 22(4):685-691.

Ponnusamy A, Marques JLB, Reuber M. Comparison of heart rate variability parameters during complex partial seizures and psychogenic nonepileptic seizures. Epilepsia. 2012; 53(8):1314-1321.

Nemati E, Jamal DM, Mondal T. A wireless wearable ECG sensor for long-term applications. IEEE Commun Mag. 2012; 50(1):36-43.

Vogt E, Macquarrie D, Neary JP. Using ballistocardiography to measure cardiac performance: a brief review of its history and future significance. Clin Physiol Funct Imaging. 2012; 32(6):415-420

Inan OT, Migeotte PF, Park KS, Etemadi M, Tavakolian K, Casanella R et al. Ballistocardiography and Seismocardiography: A review of Recent Advances. IEEE J Biomed Health Inform. 2015; 19(4):1414-1427.

Li C, Lubecke VM, Boric-Lubecke O, Lin J. A review on Recent Advances in Doppler Radar Sensors for Noncontact Healthcare Monitoring. IEEE Trans Microw Theory Tech. 2013; 61(5):2046-2060.

Droitcour A, Lubecke V, Lin J, Boric-Lubecke O. A microwave radio for Doppler radar sensing of vital signs. 2001 IEEE MTT-S International Microwave Symposium Digest. 2001; 175-178.

Poh MZ, McDuff DJ, Picard RW. Advancements in noncontact, multiparameter physiological measurements using a webcam. IEEE Trans Biomed Eng. 2011; 58(1):7-11.

Lee KZ, Hung PC, Tsai LW. Contact-free heart rate measurement using a camera. 2012 Ninth Conference on Computer and Robot Vision. 2012; Toronto; Canada.

Chi YM, Patrick NG, Kang E, Kang J, Fang J, Cauwenberghs G. Wireless non-contact cardiac and neural monitoring. Wirel Health. 2010; ACM:15-23.

Chi YM, Deiss SR, Cauwenberghs G. Non-contact low power EEG/ECG electrode for high density wearable biopotential sensor networks. 2009 Sixth International Workshop on Wearable and Implantable Body Sensor Networks. 2009; Berkeley; USA.

Chi YM, Cauwenberghs G. Wireless non-contact EEG/ECG electrodes for body sensor networks. 2010 International Conference on Body Sensor Networks. 2010; Singapore; Singapore.

Park C, Chou PH, Bai Y, Matthews R, Hibbs A. An ultra-wearable, wireless, low power ECG monitoring system. 2006 IEEE Biomedical Circuits and Systems Conference. 2006; Longo; UK.

Lim YG, Kim KK, Park S. ECG measurement on a chair without conductive contact. IEEE Trans Biomed Eng. 2006; 53(5):956-959

Kim KK, Lim YK, Park KS. Common mode noise cancellation for electrically non-contact ECG measurement system on a chair. 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference. 2006; Shanghai; China.

Lim YG, Kim KK, Park KS. ECG recording on a bed during sleep without direct skin-contact. IEEE Trans Biomed Eng. 2007; 54(4):718-725

Lee HJ, Hwang SH, Yoon HN, Lee WK, Park KS. Heart rate variability monitoring during sleep based on capacitively coupled textile electrodes on a bed. Sensors. 2015; 15(5):11295-11311.

Atallah L, Serteyn A, Meftah M, Schellekens M, Vullings R,Bergmans JWM et al. Unobstrusive ECG monitoring in the NICU using a capacitive sensing array. Physiol Meas. 2014; 35(5):895.

Castro ID, Morariu R, Torfs T, Van Hoof C, Puers R. Robust wireless capacitive ECG system with adaptive signal quality and motion artifact reduction. 2016 IEEE International Symposium on Medical Measurement and Applications. 2016; Benevento; Italy.

Castro I, Varon C, Torfs T, Van Huffel S, Puers R, Van Hoof C. Evaluating of a multichannel non-contact ECG system and signal quality algorithms for sleep apnea detection and monitoring. Sensors. 2018; 18(2):577.

Seo M, Choi M, Lee J, Kim S. Adaptive Noise Reduction Algorithm to Improve R Peak Detection in ECG Measured by Capacitive ECG Sensors. Sensors. 2018; 18(7):2086.

Baxter LK. Capacitive sensors: design and applications. New York: IEEE Press; 1997.

Torfs T, Chen YH, Kim H, Yazicioglu RF. Noncontact ECG Recording System With Real Time Capacitance Measurement for Motion Artifact Reduction. IEEE Trans Biomed Circuits Syst. 2014; 8(5):617-625.

Oehler M, Ling V, Melhorn K, Schilling M. A multichannel portable ECG system with capacitive sensors. Physiol Meas. 2008; 29(7):783.

Chi YM, Jung TPJ, Cauwenberghs G. Dry-contact and noncontact biopotentials electrodes: Methodological review. IEEE Rev Biomed Eng. 2009; 3: 106-119.

Downloads

Publicado

2019-12-28

Como Citar

Lopes, L. B., Lucas, M. G., Antunez, K. M., Souza Jr., A. A. de, Richter, C. M., & Tavares, M. C. (2019). Sistema simples com eletrodos capacitivos para monitoramento da frequência cardíaca através de contato indireto. Revista Brasileira De Física Médica, 13(2), 47–52. https://doi.org/10.29384/rbfm.2019.v13.n2.p47-52

Edição

Seção

Artigo Original

Artigos mais lidos pelo mesmo(s) autor(es)