Effective Dose in Chest Radiographic Exams: A Study with Semi-Anatomical Phantom

Authors

  • Thiago Victorino Claus Universidade Franciscana (UFN) https://orcid.org/0000-0003-1446-0721
  • Flávio Augusto Soares Instituto Federal de Santa Catarina (IFSC)
  • Tobias Soares Gomes Instituto Federal de santa Catarina (IFSC) https://orcid.org/0000-0002-7635-8880
  • Tadeu Baumhardt Universidade Federal de Santa Maria/ Hospital Universitário de Santa Maria
  • Igor Costa do Amaral Universidade Franciscana (UFN)
  • Jéssica Fetzer
  • Luísa Vargas Cassol https://orcid.org/0009-0003-3130-4453

DOI:

https://doi.org/10.29384/rbfm.2024.v18.19849001779

Keywords:

Radiografia, Radiologia computadorizada, Dose efetiva, Razão Sinal-Ruído

Abstract

The experimental study aimed to assess the impact of exposure technique on Image Quality (IQ) and Effective Dose (ED) estimation in chest radiographic examinations, with the aim of optimizing this technique. Using a fixed radiographic equipment, a semi-anatomical chest phantom, and a Computerized Radiography (CR) system for image digitization, ten exposure technique combinations were tested, five for each of the two projections: Posteroanterior (PA) and lateral (LAT). Radiation dose measurements were conducted with a calibrated dosimetric set. The ED and average organ doses were estimated for each technique-projection set using PCXMC software. IQ evaluation was carried out through the "regions of interest" tool in ImageJ software, calculating the Signal-to-Noise Ratio (SNR) and Contrast-to-Noise Ratio (CNR) based on the average signal and noise values obtained. A Figure of Merit (FM) was developed to assess the impact of technique optimization. Results indicated that the proposed exposure technique optimization led to a significant reduction in patient ED with minimal impact on IQ. Increasing the voltage by 44.4% (from 81 to 117 kVp) and reducing the product of current and time by 92% (from 20 to 1.6 mA.s for PA and from 40 to 3.2 mA.s for LAT) allowed for approximately 90% reduction in ED for both projections, while improving IQ descriptors. It is concluded that this approach is effective in enhancing the safety and efficacy of chest radiographic procedures, thereby providing clinical benefits to patients.

Downloads

Download data is not yet available.

References

HAUGE, I. H. et al. Radiography: Impact of lower tube voltages on image quality and radiation dose in chest phantom radiography for averaged sized and larger patients. 2017.

HÄGGMARK, Ilian et al. Phase-contrast virtual chest radiography. Proceedings of the National Academy of Sciences, v. 120, n. 1, p. e2210214120, 2023.

TOMPE, Aparna; SARGAR, Kiran. X-Ray Image Quality Assurance. StatPearls [Internet], 2020.

BUSHONG, Stewart C. Manual de radiología para técnicos: Física, biología y protección radiológica. Elsevier Health Sciences, 2022.

BONTRAGER, Kenneth L.; LAMPIGNANO, John P. Tratado de posicionamento radiográfico e anatomia associada. Elsevier Brasil, 2017.

TSAPAKI, V. et al. The International Atomic Energy Agency action plan on radiation protection of patients and staff in interventional procedures: Achieving change in practice. Physica Medica, v. 52, p. 56-64, 2018.

CNEN –Comissão Nacional de Energia Nuclear. Norma CNEN NN 3.01: Diretrizes Básicas de Proteção Radiológica.Rio de Janeiro -RJ, (2024).

STUK. Radiation and Nuclear Safety Authority. PCXMC—a PC-based Monte Carlo program for calculating patient doses in medical X ray examinations. Finnish Radiation and Nuclear Safety Authority. Disponível em: http://www.stuk.fi/sateilyn kaytto/ohjelmat/PCXMC/en GB/pcxmc/. Acesso em: 10 mai. 2023.

VIANNA, E.R.L.; SCHWARZ, A. P. (2020). Desenvolvimento e Construção de um Fantoma de Tórax para Uso nos Estudos de Imagens Radiológicas [Trabalho Final de Graduação, Universidade Franciscana-UFN].

ANVISA - Agência Nacional de Vigilância Sanitária (Brasil). Radiodiagnóstico médico: segurança e desempenho de equipamentos. 2005.

ANVISA. MINISTÉRIO DA SAÚDE. Resolução no 611, de 09 de março de 2022. Estabelece os requisitos sanitários para a organização e o funcionamento de serviços de radiologia diagnóstica ou intervencionista e regulamenta o controle das exposições médicas, ocupacionais e do público decorrentes do uso de tecnologias radiológicas diagnósticas ou intervencionistas. Diário Oficial da União, Brasília, DF, 16 mar. 2022.

ALVAREZ, Matheus et al. Dose Efetiva e Nível de Referência de Dose (DRL) em radiologia em um hospital terciário. Revista Brasileira de Física Médica, v. 16, p. 678-678, 2022.

PROTECTION, Radiological. ICRP publication 103. Ann ICRP, v. 37, n. 2.4, p. 2, 2007.

WAYNE R. Software para processamento e análise de imagens. USA: National Institute of Mental Health, Java. 2021. Disponível em: http://rsbweb.nih.gov/ij/download.html Acesso em: 03 Jun. 2023.

CLAUS, Thiago Victorino et al. A influência da lei do inverso do quadrado da distância nos indicadores de exposição e qualidade de imagem para exames radiográficos de pelve. Research, Society and Development, v. 13, n. 4, p. e1013445448-e1013445448, 2024.

BUSHBERG, J. T. The essential physics of medical imaging. 2. ed. Philadelphia: Lippincott Williams & Wilkins, 2012.

MRAITY, Hussien AAB et al. Development and validation of a visual grading scale for assessing image quality of AP pelvis radiographic images. The British journal of radiology, v. 89, n. 1061, p. 20150430, 2016.

MENDES, Hitalo Rodrigues; SILVA, Júlio Casagrande; TOMAL, Alessandra. Simulação Monte Carlo em radiografia de tórax: estudos de dose e qualidade da imagem. Revista Brasileira de Física Médica, v. 13, n. 1, p. 145-153, 2019.

BARBA, James; CULP, Melissa. Copper Filtration and kVp: Effect on Entrance Skin Exposure. Radiologic technology, v. 86, n. 6, p. 603-609, 2015.

ANVISA - Agência Nacional de Vigilância Sanitária (Brasil). Instrução normativa - in nº 90, de 27 de maio de 2021, Diário Oficial da União, Edição: 101, Seção: 1, Página: 149, Publicado em:31/05/2021.

DE OLIVEIRA, Paulo Marcio Campos. Avaliação de parâmetros da qualidade de imagem e dosimetria de pacientes submetidos a exames radiológicos de tórax. 2012.

METTLER FA, HUDA W, Yoshizumi TT, MAHESH M. Effective Doses in Radiology and Diagnostic Nuclear Medicine: A Catalog. Radiology. 2008; 248(1):254–63.

METAXAS, Vasileios I. et al. Patient doses in common diagnostic X-ray examinations. Radiation protection dosimetry, v. 184, n. 1, p. 12-27, 2019.

WADA, Danilo Tadao; RODRIGUES, José Antonio Hiesinger; SANTOS, Marcel Koenigkam. Anatomia normal da radiografia de tórax. Medicina (Ribeirão Preto), v. 52, n. supl1., p. 17-29, 2019.

CARROLL, Q. B. Radiography In The Digital Age: Physics - Exposure - Radiation Biology. Ed. 2. China: Publisher, 2014.

DANCE, D. R.;CHRISTOFIDES, S. et al. Diagnostic radiology physics: a handbook for teachers and students. Vienna. International Atomic Energy Agency, 2014.

KUNITOMO, Hiroshi; ICHIKAWA, Katsuhiro. Signal-to-noise ratio improvements using anti-scatter grids with different object thicknesses and tube voltages. Physica Medica, v. 73, p. 105-110, 2020.

HUDA, Walter; ABRAHAMS, R. Brad. Radiographic techniques, contrast, and noise in x-ray imaging. American Journal of Roentgenology, v. 204, n. 2, p. W126-W131, 2015.

AL-MURSHEDI, Sadeq; HOGG, Peter; ENGLAND, Andrew. Relationship between body habitus and image quality and radiation dose in chest X-ray examinations: a phantom study. Physica Medica, v. 57, p. 65-71, 2019.

MC FADDEN, Sonyia et al. Digital imaging and radiographic practise in diagnostic radiography: an overview of current knowledge and practice in Europe. Radiography, v. 24, n. 2, p. 137-141, 2018.

Published

2024-09-11

How to Cite

Victorino Claus, T., Augusto Soares, F., Soares Gomes, T., Baumhardt, T., Costa do Amaral, I., Fetzer, J., & Vargas Cassol, L. (2024). Effective Dose in Chest Radiographic Exams: A Study with Semi-Anatomical Phantom. Brazilian Journal of Medical Physics, 18, 779. https://doi.org/10.29384/rbfm.2024.v18.19849001779

Issue

Section

Artigo Original