Dosimetry of occupational exposure in a hemodynamics room using a solid state detector
DOI:
https://doi.org/10.29384/rbfm.2024.v18.19849001782Keywords:
interventional radiology, hemodynamics, solid state detector, radiological protection, occupationally exposed individuals, effective doseAbstract
Interventional radiology procedures may lead to high doses for the professionals involved and they are among the highest occupational doses in hospital services. This exposure can be influenced by factors such as the professional's distance from the operating table, shielding, the parameters used and the size of the patient. The aim of this study was therefore to verify the effective doses of the multidisciplinary team and the number of annual procedures allowed, within the dose limits established by CNEN NN 3.01, by varying the dosimetric scenario. To make this, a solid-state detector was used to measure air kerma rates in simulations of head and abdomen procedures on a PMMA phantom, which were later converted into effective dose using the effective dose conversion factors per unit of air kerma available in ICRP 74. The results showed that increasing the distance between the professional and the operating table by 56 cm led to dose reductions of up to 85%, while the use of suspended lead glass reduced the effective dose by 99%. In addition, changing the thickness of the patient from 16 to 32 cm in diameter resulted in a 47-fold increase in the dose received by the main physician.
Downloads
References
Arnold MJ, Keung JJ, McCarragher B. Interventional Radiology: Indications and Best Practices. Am Fam Physician [Internet]. 2019 May 1;99(9):547–56.
Lanza C, Carriero S, Buijs EFM, Mortellaro S, Pizzi C, Sciacqua LV, et al. Robotics in Interventional Radiology: Review of Current and Future Applications. Technol Cancer Res Treat [Internet]. 2023 Jan 27;22:153303382311520.
Falco MD, Masala S, Stefanini M, Bagalà P, Morosetti D, Calabria E, et al. Effective-dose estimation in interventional radiological procedures. Radiol Phys Technol [Internet]. 2018 Jun 8;11(2):149–55.
Baum RA, Baum S. Interventional Radiology: A Half Century of Innovation. Radiology [Internet]. 2014 Nov;273(2S):S75–91.
Morrish OWE, Goldstone KE. An investigation into patient and staff doses from X-ray angiography during coronary interventional procedures. Br J Radiol [Internet]. 2008 Jan;81(961):35–45.
Topaltzikis T, Rountas C, Moisidou R, Fezoulidis I, Kappas C, Theodorou K. Radiation dose to patients and staff during angiography of the lower limbs. Derivation of local dose reference levels. Phys Medica [Internet]. 2009 Mar;25(1):25–30.
Santos WS, Neves LP, Perini AP, Belinato W, Caldas LVE, Carvalho AB, et al. Exposures in interventional radiology using Monte Carlo simulation coupled with virtual anthropomorphic phantoms. Phys Medica [Internet]. 2015 Dec;31(8):929–33.
Lunelli NA, Khoury HJ, Andrade GHV de, Borrás C. Evaluation of occupational and patient dose in cerebral angiography procedures. Radiol Bras [Internet]. 2013 Dec;46(6):351–7.
Moura R, Bacchim Neto FA. Proteção radiológica aplicada à radiologia intervencionista. J Vasc Bras [Internet]. 2015 Sep;14(3):197–9.
Leyton F, Canevaro L, Dourado A, Castello H, Bacelar A, Navarro MT, et al. Riscos da Radiação X e a Importância da Proteção Radiológica na Cardiologia Intervencionista: Uma Revisão Sistemática. Rev Bras Cardiol Invasiva [Internet]. 2014 Mar;22(1):87–98.
Silva LP da, Maurício CL de P, Canevaro LV, Oliveira PS. Avaliação da exposição dos médicos à radiação em procedimentos hemodinâmicos intervencionistas. Radiol Bras [Internet]. 2008 Oct;41(5):319–23.
Crowhurst J, Savage M, Hay K, Murdoch D, Aroney N, Dautov R, et al. Impact of Patient BMI on Patient and Operator de procedimentos que os profissionais atuantes em diferentes posições da sala, variando-se os parâmetros do procedimento e configurações do cenário, podem realizar anualmente. Com isso, os IOEs atuantes na RI podem ter a ciência dos riscos envolvidos, a fim de evitar a ocorrência de efeitos adversos.
Agradecimentos
Os autores agradecem o apoio financeiro da UFU e das agências de fomento: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Código de Financiamento 001; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) pelos projetos de pesquisa 3999459/2023-3 (F.B.C.), 161258/2023-9 (I.C.S.S.), 312160/2023-2 (L.P.N.), 312124/2021-0 (A.P.P.); 407493/2021-2; 403556/2020-1; Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), por meio dos projetos APQ-04215-22, APQ-01254-23 e APQ-04348-23. S.P.S agradece à FAPEMIG pela Bolsa de Doutorado. Este trabalho faz parte do Instituto Brasileiro de Ciência e Tecnologia para Instrumentação Nuclear e Aplicações à Indústria e à Saúde (INCT/INAIS), projeto CNPQ 406303/2022-3.
Referências
Arnold MJ, Keung JJ, McCarragher B. Interventional Radiology: Indications and Best Practices. Am Fam Physician [Internet]. 2019 May 1;99(9):547–56.
Lanza C, Carriero S, Buijs EFM, Mortellaro S, Pizzi C, Sciacqua LV, et al. Robotics in Interventional Radiology: Review of Current and Future Applications. Technol Cancer Res Treat [Internet]. 2023 Jan 27;22:153303382311520.
Falco MD, Masala S, Stefanini M, Bagalà P, Morosetti D, Calabria E, et al. Effective-dose estimation in interventional radiological procedures. Radiol Phys Technol [Internet]. 2018 Jun 8;11(2):149–55.
Baum RA, Baum S. Interventional Radiology: A Half Century of Innovation. Radiology [Internet]. 2014 Nov;273(2S):S75–91.
Morrish OWE, Goldstone KE. An investigation into patient and staff doses from X-ray angiography during coronary interventional procedures. Br J Radiol [Internet]. 2008 Jan;81(961):35–45.
Topaltzikis T, Rountas C, Moisidou R, Fezoulidis I, Kappas C, Theodorou K. Radiation dose to patients and staff during angiography of the lower limbs. Derivation of local dose reference levels. Phys Medica [Internet]. 2009 Mar;25(1):25–30.
Santos WS, Neves LP, Perini AP, Belinato W, Caldas LVE, Carvalho AB, et al. Exposures in interventional radiology using Monte Carlo simulation coupled with virtual anthropomorphic phantoms. Phys Medica [Internet]. 2015 Dec;31(8):929–33.
Lunelli NA, Khoury HJ, Andrade GHV de, Borrás C. Evaluation of occupational and patient dose in cerebral angiography procedures. Radiol Bras [Internet]. 2013 Dec;46(6):351–7.
Moura R, Bacchim Neto FA. Proteção radiológica aplicada à radiologia intervencionista. J Vasc Bras [Internet]. 2015 Sep;14(3):197–9.
Leyton F, Canevaro L, Dourado A, Castello H, Bacelar A, Navarro MT, et al. Riscos da Radiação X e a Importância da Proteção Radiológica na Cardiologia Intervencionista: Uma Revisão Sistemática. Rev Bras Cardiol Invasiva [Internet]. 2014 Mar;22(1):87–98.
Silva LP da, Maurício CL de P, Canevaro LV, Oliveira PS. Avaliação da exposição dos médicos à radiação em procedimentos hemodinâmicos intervencionistas. Radiol Bras [Internet]. 2008 Oct;41(5):319–23.
Crowhurst J, Savage M, Hay K, Murdoch D, Aroney N, Dautov R, et al. Impact of Patient BMI on Patient and Operator Radiation Dose During Percutaneous Coronary Intervention. Hear Lung Circ [Internet]. 2022 Mar;31(3):372–82.
Kim JH. Three principles for radiation safety: time, distance, and shielding. Korean J Pain [Internet]. 2018 Jul 31;31(3):145–6.
Refahiyat L, VanOosterhout S, Mulder A, Ten Brock T, Parker JL, Negash A, et al. Impact of patient obesity on radiation doses received by scrub technologists during coronary angiography. Cardiovasc Revascularization Med [Internet]. 2018 Dec;19(8):929–33.
Refahiyat L, VanOosterhout S, Pageau S, Parker JL, Madder RD. Patient Body Mass Index and Occupational Radiation Doses to Circulating Nurses During Coronary Angiography. Cardiovasc Revascularization Med [Internet]. 2021 May;26:48–52.
Wilson‐Stewart K, Hartel G, Fontanarosa D. Occupational radiation exposure to the head is higher for scrub nurses than cardiologists during cardiac angiography. J Adv Nurs [Internet]. 2019 Nov 5;75(11):2692–700.
Madder RD, VanOosterhout S, Mulder A, Ten Brock T, Clarey AT, Parker JL, et al. Patient Body Mass Index and Physician Radiation Dose During Coronary Angiography. Circ Cardiovasc Interv [Internet]. 2019 Jan;12(1).
Schultz GR. Radiation-associated cataracts among interventional physicians and support staff. J Indian Coll Cardiol [Internet]. 2016 May;6:102–4.
Roguin A, Goldstein J, Bar O. Brain tumours among interventional cardiologists: a cause for alarm? Report of four new cases from two cities and a review of the literature. EuroIntervention [Internet]. 2012 Jan;7(9):1081–6.
Karatasakis A, Brilakis HS, Danek BA, Karacsonyi J, Martinez-Parachini JR, Nguyen-Trong P-KJ, et al. Radiation-associated lens changes in the cardiac catheterization laboratory: Results from the IC-CATARACT (CATaracts Attributed to RAdiation in the CaTh lab) study. Catheter Cardiovasc Interv [Internet]. 2018 Mar 1;91(4):647–54.
Knoll GF. Radiation detection and measurement. New York: John Wiley & Sons, Cop; 2010.
Artis zee [Internet]. www.siemens-healthineers.com. [cited 2024 Mar 15]. Available from: https://www.siemens-healthineers.com/br/angio/artis-interventional-angiography-systems/artis-zee.
RTI Scatter Probe [Internet]. RTI. [cited 2024 Abr 03]. Available from: https://rtigroup.com/products/rti-scatter-probe/rti-scatter-probe/.
RTI Piranha meter [Internet]. RTI. [cited 2024 Mar 15]. Available from: https://rtigroup.com/rti-piranha-meter/.
ICRP, 1996. Conversion Coefficients for Use in Radiological Protection against External Radiation. International Commission on Radiological Protection, ICRP Publication 74. Tarrytown, NY.
Scremin SCG, Schelin HR, Tilly Jr. JG. Avaliação da exposição ocupacional em procedimentos de hemodinâmica. Radiologia Brasileira. 2006 Apr;39(2):123–6.
Dorman T, Drever B, Plumridge S, Gregory K, Cooper M, Roderick A, et al. Radiation dose to staff from medical X-ray scatter in the orthopaedic theatre. European Journal of Orthopaedic Surgery & Traumatology. 2023 Apr 1.
Norma CNEN NN 3.01 - Diretrizes Básicas de Proteção Radiológica. Resolução 164/14, Março, 2014.
International Commission on Radiological Protection. ICRP Publication 85 - Avoidance of Radiation Injuries from Medical Interventional Procedures. SAGE Publications Limited; 2001.
Chida K. What are useful methods to reduce occupational radiation exposure among radiological medical workers, especially for interventional radiology personnel? Radiological Physics and Technology. 2022 May 24;15(2):101–15.
Haga Y, Chida K, Kimura Y, Yamanda S, Sota M, Abe M, et al. Radiation eye dose to medical staff during respiratory endoscopy under X-ray fluoroscopy. Journal of Radiation Research. 2020 Jul 13;61(5):691–6.
Serna Santos J, Uusi-Simola J, Kaasalainen T, Aho P, Venermo M. Radiation Doses to Staff in a Hybrid Operating Room: An Anthropomorphic Phantom Study with Active Electronic Dosimeters. European Journal of Vascular and Endovascular Surgery. 2020 Apr;59(4):654–60.
Santos WS, Carvalho Jr. AB, Hunt JG, Maia AF. Using the Monte Carlo technique to calculate dose conversion coefficients for medical professionals in interventional radiology. Radiation Physics and Chemistry. 2014 Feb;95:177–80.
Uppot RN. Technical challenges of imaging & image-guided interventions in obese patients. The British Journal of Radiology [Internet]. 2018 Jun 5;91(1089):20170931.
Kato M, Chida K, Ishida T, Toyoshima H, Yoshida Y, Yoshioka S, et al. Occupational Radiation Exposure Of The Eye In Neurovascular Interventional Physician. Radiation Protection Dosimetry [Internet]. 2019 Jan 9 [cited 2019 Nov 20].
Castro Bienert IR, Ferreira LC, da Silva PA, Kasama Miwa DT, Bastos Florêncio CL, Mota RL, et al. Avaliação da radiação espalhada e do impacto dos dispositivos locais de proteção em laboratório de cardiologia intervencionista. Revista Brasileira de Cardiologia Invasiva. 2016 Jan;24(1-4):38–43.
Fisher RF, Applegate KE, Berkowitz LK, Christianson O, Dave JK, DeWeese L, et al. AAPM Medical Physics Practice Guideline 12.a: Fluoroscopy dose management. Journal of Applied Clinical Medical Physics. 2022 Feb 17;23(3).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Alessa Maschio, Felipe Beraldo da Cruz, Ingrid Cristina dos Santos Silva, Tainara Gabrieli Zandoná, Samara Pavan Souza, Cássio Vilela Komatsu, Lucio Pereira Neves, Ana Paula Perini
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The submission of original articles to the Brazilian Journal of Medical Physics implies the transfer, by the authors, of the rights of print and digital publication. Copyright for published articles remains with the author, with journal rights on first publication. Authors may only use the same results in other publications by clearly indicating this journal as the original publisher. As we are an open access journal, free use of articles in educational, scientific, non-commercial applications is allowed, as long as the source is cited.
The Brazilian Journal of Medical Physics is under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).